[1] |
An, G., Watson, B.D., Stachel, S. et al. New cloning vehicles for transformation of higher plants EMBO J., 4 (1985),pp. 277-284
|
[2] |
Bevan, M. Binary Agrobacterium vectors for plant transformation Nucleic Acids Res., 12 (1984),pp. 8711-8721
|
[3] |
Brunaud, V., Balzergue, S., Dubreucq, B. et al. EMBO Rep., 3 (2002),pp. 1152-1157
|
[4] |
Caceres, M., Ranz, J.M., Barbadilla, A. et al. Science, 285 (1999),pp. 415-418
|
[5] |
Castle, L.A., Errampalli, D., Atherton, T.L. et al. Mol. Gen. Genet., 241 (1993),pp. 504-514
|
[6] |
Clark, M.S.
|
[7] |
De Buck, S., Jacobs, A., Van Montagu, M. et al. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration Plant J., 20 (1999),pp. 295-304
|
[8] |
Dehal, P., Predki, P., Olsen, A.S. et al. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution Science, 293 (2001),pp. 104-111
|
[9] |
Gheysen, G., Villarroel, R., Van Montagu, M. Illegitimate recombination in plants: a model for T-DNA integration Genes Dev., 5 (1991),pp. 287-297
|
[10] |
Hoekema, A.P.R., Hirsch, P.R., Hooykaas, P.J.J. et al. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid Nature, 303 (1983),pp. 179-180
|
[11] |
Hoffmann, A.A., Sgro, C.M., Weeks, A.R. Chromosomal inversion polymorphisms and adaptation Trends Ecol. Evol., 19 (2004),pp. 482-488
|
[12] |
Jiang, L., Zhang, W., Xia, Z. et al. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L Mol. Genet. Genomics, 277 (2007),pp. 263-272
|
[13] |
Laufs, P., Autran, D., Traas, J. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis Plant J., 18 (1999),pp. 131-139
|
[14] |
Liu, Y.G., Mitsukawa, N., Oosumi, T. et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR Plant J., 8 (1995),pp. 457-463
|
[15] |
Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C. et al. T-DNA integration: a mode of illegitimate recombination in plants EMBO J., 10 (1991),pp. 697-704
|
[16] |
Muller, A.E., Atkinson, R.G., Sandoval, R.B. et al. Microhomologies between T-DNA ends and target sites often occur in inverted orientation and may be responsible for the high frequency of T-DNA-associated inversions Plant Cell Rep., 26 (2007),pp. 617-630
|
[17] |
Nacry, P., Camilleri, C., Courtial, B. et al. Genetics, 149 (1998),pp. 641-650
|
[18] |
Pansegrau, W., Schoumacher, F., Hohn, B. et al. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 11538-11542
|
[19] |
Sha, Y., Li, S., Pei, Z. et al. Generation and flanking sequence analysis of a rice T-DNA tagged population Theor. Appl. Genet., 108 (2004),pp. 306-314
|
[20] |
Takano, M., Egawa, H., Ikeda, J.E. et al. The structures of integration sites in transgenic rice Plant J., 11 (1997),pp. 353-361
|
[21] |
Tinland, B., Schoumacher, F., Gloeckler, V. et al. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome EMBO J., 14 (1995),pp. 3585-3595
|
[22] |
Tzfira, T., Li, J.X., Lacroix, B. et al. Agrobacterium T-DNA integration: molecules and models Trends Genet., 20 (2004),pp. 375-383
|
[23] |
Zambryski, P., Joos, H., Genetello, C. et al. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity EMBO J., 2 (1983),pp. 2143-2150
|
[24] |
Zhu, Q.H., Ramm, K., Eamens, A.L. et al. Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants Plant Sci., 171 (2006),pp. 308-322
|