5.9
CiteScore
5.9
Impact Factor
Volume 37 Issue 2
Feb.  2010
Turn off MathJax
Article Contents

Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.)

doi: 10.1016/S1673-8527(09)60033-3
More Information
  • Corresponding author: E-mail address: suncq@cau.edu.cn (Chuanqing Sun)
  • Received Date: 2009-08-28
  • Accepted Date: 2010-01-20
  • Rev Recd Date: 2010-01-04
  • Available Online: 2010-03-18
  • Publish Date: 2010-02-20
  • Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two generations (BC4F2 and BC4F4), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both generations. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future.
  • loading
  • [1]
    Akagi, H., Yokozeki, Y., Fujimura, T. Microsatellite DNA markers for rice chromosomes Theor. Appl. Genet., 93 (1996),pp. 1071-1077
    [2]
    Brar, D.S., Khush, G.S. Alien introgression in rice Plant Mol. Biol., 35 (1997),pp. 35-47
    [3]
    Brondani, C., Rangel, P.H.N., Brondani, R.P.V. et al. Theor. Appl. Genet., 104 (2002),pp. 1192-1203
    [4]
    Cai, H.W., Morishima, H. QTL clusters reflect character associations in wild and cultivated rice Theor. Appl. Genet., 104 (2002),pp. 1217-1228
    [5]
    Chen, X., Temnykh, S., Xu, Y. et al. Theor. Appl. Genet., 95 (1997),pp. 553-567
    [6]
    Cho, Y.G., Eun, M.Y., McCouch, S.R. et al. Theor. Appl. Genet., 89 (1994),pp. 54-59
    [7]
    Deng, H.B., Deng, Q.Y., Chen, L.Y. et al. Hybrid Rice, 22 (2007),pp. 49-52
    [8]
    Deng, Q.Y., Yuan, L.P., Liang, F.S. et al. Studies on yield-enhancing genes from wild rice and their marker-assisted selection in hybrid rice Hybrid Rice., 19 (2004),pp. 6-10
    [9]
    Garcia-Oliveira, A.L., Tan, L.B., Fu, Y.C. et al. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain J. Integr. Plant. Biol., 51 (2009),pp. 84-92
    [10]
    Hao, W., Jin, J., Sun, S.Y. et al. Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality J. Plant. Physiol. Mol. Biol., 32 (2006),pp. 354-362
    [11]
    Harlan, J.R. Genetic resources in wild relatives of crops Crop Sci., 16 (1976),pp. 329-333
    [12]
    He, G.M., Luo, X.J., Tian, F. et al. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice Genome Res., 16 (2006),pp. 618-626
    [13]
    Hittalmani, H., Huang, N., Courtois, B. et al. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia Theor. Appl. Genet., 107 (2003),pp. 679-690
    [14]
    Khush, G.S., Bacalangco, E., Ogawa, T. Rice Genet. Newslett., 7 (1991),p. 121
    [15]
    Khush, G.S., Ling, K.C., Aquino, R.C., and Aquiero, V.M. (1977). Breeding for resistance to grassy stunt in rice. In Proc. 3rd Intern. Congr. SABRAO, Canberra, Australia. Plant Breeding Papers 1[4], pp. 3–9.
    [16]
    Li, C.B., Zhou, A.L., Sang, T. New Phytol., 170 (2006),pp. 185-194
    [17]
    Li, D.J., Sun, C.Q., Fu, Y.C. et al. Chin. Sci. Bull., 18 (2002),pp. 1533-1537
    [18]
    Lin, S.C., and Yuan, L.P. (1980). Hybrid rice breeding in China, pp. 35–51. In International Rice Research Conference (1979, Los Baños, Laguna, Philippines). Innovative approaches to rice breeding: Selected papers.
    [19]
    Manly, K.F., , Meer, J.M. Map Manager QTX, cross-platform software for genetic mapping Mamm. Genome, 12 (2001),pp. 930-932
    [20]
    Marri, P.R., Sarla, N., Reddy, L.V. et al. BMC Genetics, 6 (2005),pp. 33-47
    [21]
    McCouch, S.R., Teytelman, L., Xu, Y.B. et al. DNA Res., 9 (2002),pp. 199-207
    [22]
    Moncada, P., Martinez, C.P., Borrero, J. et al. Theor. Appl. Genet., 102 (2001),pp. 41-52
    [23]
    Oka, H.I.
    [24]
    Panaud, O., Chen, X., McCouch, S.R. Mol. Gen. Gent., 252 (1996),pp. 597-607
    [25]
    Pang, H.H., Cai, H.W., Wang, X.K. Acta Agronomica Sinica, 21 (1995),pp. 17-24
    [26]
    Ragot, M., Sisco, P.H., Hoisington, D.A. et al. Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize Crop Sci., 35 (1995),pp. 1306-1315
    [27]
    Rogers, O.S., Bendich, A.J.
    [28]
    Second, G. Jpn. J. Genet., 57 (1982),pp. 25-57
    [29]
    Septiningsih, E.M., Prasetiyono, J., Lubis, E. et al. Theor. Appl. Genet., 107 (2003),pp. 1419-1432
    [30]
    Septiningsih, E.M., Trijatmiko, K.R., Moeljopawiro, S. et al. Theor. Appl. Genet., 107 (2003),pp. 1433-1441
    [31]
    Song, W.Y., Wang, G.L., Chen, L.L. et al. Science, 270 (1995),pp. 1084-1086
    [32]
    Sun, C.Q., Wang, X.K., Yoshimura, A. et al. Theor. Appl. Genet., 104 (2002),pp. 1335-1345
    [33]
    Sun, C.Q., Wang, X.K., Yoshimura, A. et al. Theor. Appl. Genet., 102 (2001),pp. 157-162
    [34]
    Tan, L.B., Liu, F.X., Xue, W. et al. J. Integr. Plant Biol., 49 (2007),pp. 871-884
    [35]
    Tan, L.B., Zhang, P.J., Liu, F.X. et al. Genome, 51 (2008),pp. 692-704
    [36]
    Tanksley, S.D., McCouch, S.R. Seed banks and molecular maps: unlocking genetic potential from the wild Science, 277 (1997),pp. 1063-1066
    [37]
    Tanksley, S.D., Nelson, J.C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines Theor. Appl. Genet., 92 (1996),pp. 191-203
    [38]
    Temnykh, S., Park, W., Ayres, N. et al. Theor. Appl. Genet., 100 (2000),pp. 697-712
    [39]
    Thomson, M.J., Tai, T.H., McClung, A.M. et al. Theor. Appl. Genet., 107 (2003),pp. 479-493
    [40]
    Tian, F., Li, D.J., Fu, Q. et al. Theor. Appl. Genet., 112 (2006),pp. 570-580
    [41]
    Tian, F., Zhu, Z.F., Zhang, B.S. et al. Theor. Appl. Genet., 113 (2006),pp. 619-629
    [42]
    Vaughan, D.A.
    [43]
    Wang, Z.Y., Second, G., Tanksley, S.D. Theor. Appl. Genet., 83 (1992),pp. 565-581
    [44]
    Xiao, J., Li, J., Grandillo, S. et al. Genetics, 150 (1998),pp. 899-909
    [45]
    Xiao, J., Li, J., Yuan, L. et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific cross Theor. Appl. Genet., 92 (1996),pp. 230-244
    [46]
    Zamir, D. Improving plant breeding with exotic genetic libraries Nat. Rev. Genet., 2 (2001),pp. 983-989
    [47]
    Zhang, Q., Zhao, B.Y., Zhao, K.J. et al. Acta Agronomica Sinica, 26 (2000),pp. 536-542
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return