[1] |
Adams, D.S., Eickbush, T.H., Herrera, R.J. et al. J. Mol. Biol., 187 (1986),pp. 465-478
|
[2] |
Dewannieux, M., Esnault, C., Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences Nat. Genet., 35 (2003),pp. 41-48
|
[3] |
Eickbush, T.H. Transposing without ends: the non-LTR retrotransposable elements New Biol., 4 (1992),pp. 430-440
|
[4] |
Felsenstein, J. PHYLIP—Phylogeny Inference Package (Version 3.2) Cladistics, 5 (1989),pp. 164-166
|
[5] |
Galli, G., Hofstette, H., Bimstiel, M.L. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements Nature, 294 (1981),pp. 626-631
|
[6] |
Hamada, M., Kido, Y., Himberg, M. et al. A newly isolated family of short interspersed repetitive elements (SINEs) in coregonid fishes (whitefish) with sequences that are almost identical to those of the SmaI family of repeats: possible evidence for the horizontal transfer of SINEs Genetics, 146 (1997),pp. 355-367
|
[7] |
Hasan, G., Turner, M.J., Cordingley, J.S. Cell, 37 (1984),pp. 333-341
|
[8] |
Kajikawa, M., Okada, N. LINEs mobilize SINEs in the eel through a shared 3′ sequence Cell, 111 (2002),pp. 433-444
|
[9] |
Kajikawa, M., Okada, N. Isolation and characterization of active LINE and SINEs from the eel Mol. Biol. Evol., 22 (2005),pp. 673-682
|
[10] |
Kido, Y., Aono, M., Yamaki, T. et al. Shaping and reshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 2326-2330
|
[11] |
Kimura, R.H., Choudary, P.V., Schmid, C.W. Silkworm Bm1 SINE RNA increases following cellular insults Nucleic Acids Res., 27 (1999),pp. 3380-3387
|
[12] |
Kramerov, D.A., Vassetzky, N.S. Short retroposon in eukaryotic genome Int. Rev. Cytol., 247 (2005),pp. 165-221
|
[13] |
Lander, E.S., Linton, L.M., Birren, B. et al. Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
|
[14] |
Luan, D.D., Korman, M.H., Jakubczak, J.L. et al. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition Cell, 72 (1993),pp. 595-605
|
[15] |
Lowe, T.M., Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence Nucleic Acids Res., 25 (1997),pp. 955-964
|
[16] |
Maichele, A.J., Farwell, N.J., Chamberlain, J.S. A B2 repeat insertion generates altemate structures of the mouse muscle Y-phosphorylase kinase gene Genomics, 16 (1993),pp. 139-149
|
[17] |
Nakajima, Y., Hashido, K., Tsuchida, K. et al. J. Mol. Evol., 48 (1999),pp. 577-585
|
[18] |
Ogiwara, I., Miya, M., Ohshima, K. et al. Retropositional Parasitism of SINEs on LINEs: identification of SINEs and LINEs in Elasmobranchs Mol. Biol. Evol., 16 (1999),pp. 1238-1250
|
[19] |
Ohshima, K., Okada, N. SINEs and LINEs: symbionts of eukaryotic genomes with a common tail Cytogenet. Genome Res., 110 (2005),pp. 475-490
|
[20] |
Ohshima, K., Hamada, M., Terai, Y. et al. The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements Mol. Cell Biol., 16 (1996),pp. 3756-3764
|
[21] |
Okada, N. SINEs: short interspersed repeated elements of the eukaryotic genome Trends Ecol. Evol., 6 (1991),pp. 358-361
|
[22] |
Okada, N., Hamada, M., Ogiwara, I. et al. SINEs and LINEs share common 3′ sequences: a review Gene, 205 (1997),pp. 229-243
|
[23] |
Piskurek, O., Austin, C.C., Okada, N. Sauria SINEs: novel short interspersed retroposable elements that are widespread in reptile genomes J. Mol. Evol., 62 (2006),pp. 630-644
|
[24] |
Rho, M., Tang, H. MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes Nucleic Acids Res., 37 (2009),pp. 1-12
|
[25] |
Schmid, C.W., Maraia, R. Transcriptional regulation and transpositional selection of active SINE sequences Curr. Opin. Genet. Dev., 2 (1992),pp. 874-882
|
[26] |
Sela, N., Mersch, B., Gal-Mark, N. et al. Comparative analysis of transposed elements' insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome Genome Biol., 8 (2007),pp. R1271-R12719
|
[27] |
Shedlock, A.M., Okada, N. SINE insertions: powerful tools for molecular systematics Bioessays, 22 (2000),pp. 148-160
|
[28] |
Smit, A. F. A., Hubley, R., and Green, P. (1996–2004). RepeatMasker Open-3.0 (http://www.repeatmsker.org).
|
[29] |
Sun, F.J., Fleurdepine, S., Cecile, B.A. et al. Common evolutionary trends for SINE RNA structures Trends Genet., 23 (2006),pp. 26-33
|
[30] |
Takasaki, N., Murata, S., Saitoh, M. et al. Species-specific amplification of tRNAderived short interspersed repetitive elements (SINEs) by retroposition: a process of parasitization of entire genomes during the evolution of salmonids Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 10153-10157
|
[31] |
Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22 (1994),p. 4673
|
[32] |
Tsuchimoto, S., Hirao, Y., Ohtsubo, E. et al. New SINE families from rice, OsSN, with poly(A) at the 3′ ends Genes Genet. Syst., 83 (2008),pp. 227-236
|
[33] |
Ullu, E., Tschudi, C. Alu sequences are processed 7SL RNA genes Nature, 312 (1984),pp. 171-172
|
[34] |
Wang, J., Wong, G.K., Ni, P.X. et al. RePS: a sequence assembler that masks exact repeats identified from the shotgun data Genome Res., 2 (2002),pp. 824-831
|
[35] |
Weiner, A.M. An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome Cell, 22 (1980),pp. 209-218
|
[36] |
Wichman, H.A., Van den Bussche, R.A., Hamilton, M.J. et al. Transposable elements and the evolution of genome organization in mammals Genetica, 86 (1992),pp. 287-293
|
[37] |
Xia, Q., Wang, J., Zhou, Z. et al. Insect Biochem. Mol. Biol., 38 (2008),pp. 1036-1045
|
[38] |
Xia, Q.Y., Guo, Y., Zhang, Z. et al. Science, 326 (2009),pp. 433-436
|
[1] | Xin Li, Quan Liu, Chong Fu, Mengxun Li, Changchun Li, Xinyun Li, Shuhong Zhao, Zhuqing Zheng. Characterizing structural variants based on graph-genotyping provides insights into pig domestication and local adaption[J]. Journal of Genetics and Genomics, 2024, 51(4): 394-406. doi: 10.1016/j.jgg.2023.11.005 |
[2] | Xiang Chen, Xiaomin Yu. Toward a universal approach for predicting variant pathogenicity in diverse disease landscapes[J]. Journal of Genetics and Genomics, 2024, 51(11): 1346-1349. doi: 10.1016/j.jgg.2024.07.015 |
[3] | Fabiola Mavillard, Javier Perez-Florido, Francisco M. Ortuño, Amador Valladares, Miren L. Álvarez-Villegas, Gema Roldán, Rosario Carmona, Manuel Soriano, Santiago Susarte, Pilar Fuentes, Daniel López-López, Ana María Nuñez-Negrillo, Alejandra Carvajal, Yolanda Morgado, Daniel Arteaga, Rosa Ufano, Pablo Mir, Juan F. Gamella, Joaquín Dopazo, Carmen Paradas, Macarena Cabrera-Serrano. The Iberian Roma Population Variant Server (IRPVS)[J]. Journal of Genetics and Genomics, 2024, 51(7): 769-773. doi: 10.1016/j.jgg.2024.03.006 |
[4] | Chen Qu, Yating Kan, Xinyi Wang, Hui Zuo, Mengqi Wu, Zhixiang Dong, Qing Zhang, Heng Wang, Dou Wang, Jiong Chen. Corrigendum to “Actin polymerization induces mitochondrial distribution during collective cell migration” [Journal of Genetics and Genomics (2023) 50 46–49][J]. Journal of Genetics and Genomics, 2023, 50(3): 221-221. doi: 10.1016/j.jgg.2023.02.002 |
[5] | Chen Qu, Yating Kan, Hui Zuo, Mengqi Wu, Zhixiang Dong, Xinyi Wang, Qing Zhang, Heng Wang, Dou Wang, Jiong Chen. Actin polymerization induces mitochondrial distribution during collective cell migration[J]. Journal of Genetics and Genomics, 2023, 50(1): 46-49. doi: 10.1016/j.jgg.2022.04.014 |
[6] | Zu-Wen Zhou, Zhi-Guang Yu, Xiao-Ming Huang, Jin-Shen Liu, Yi-Xiong Guo, Ling-Ling Chen, Jia-Ming Song. GenomeSyn: a bioinformatics tool for visualizing genome synteny and structural variations[J]. Journal of Genetics and Genomics, 2022, 49(12): 1174-1176. doi: 10.1016/j.jgg.2022.03.013 |
[7] | Changshuo Wei, Ke-Jia Shan, Weiguang Wang, Shuya Zhang, Qing Huan, Wenfeng Qian. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant[J]. Journal of Genetics and Genomics, 2021, 48(12): 1111-1121. doi: 10.1016/j.jgg.2021.12.003 |
[8] | Kaiqin Li, Yifan Li, Junyang Wang, Yongxia Huo, Di Huang, Shiwu Li, Jiewei Liu, Xiaoyan Li, Rong Liu, Xiaogang Chen, Yong-Gang Yao, Ceshi Chen, Xiao Xiao, Ming Li, Xiong-Jian Luo. A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population[J]. Journal of Genetics and Genomics, 2020, 47(5): 233-248. doi: 10.1016/j.jgg.2020.04.001 |
[9] | Yangyang Feng, Yu Wang, Shaocun Zhang, Kabeer Haneef, Wanli Liu. Structural and immunogenomic insights into B-cell receptor activation[J]. Journal of Genetics and Genomics, 2020, 47(1): 27-35. doi: 10.1016/j.jgg.2019.12.003 |
[10] | Jiao Wang, Lin-Lin Yan, Zhi-Liang Yue, Hao-Yue Li, Xiu-Jie Ji, Cui-Xia Pu, Ying Sun. Receptor-like kinase OsCR4 controls leaf morphogenesis and embryogenesis by fixing the distribution of auxin in rice[J]. Journal of Genetics and Genomics, 2020, 47(9): 577-589. doi: 10.1016/j.jgg.2020.08.002 |
[11] | Ming Li, Wanzhong He, Wei Li, Guangshuo Ou. Ciliopathy-associated proteins are involved in vesicle distribution in sensory cilia[J]. Journal of Genetics and Genomics, 2019, 46(5): 269-271. doi: 10.1016/j.jgg.2019.03.012 |
[12] | Si-Jin Cheng, Shuai Jiang, Fang-Yuan Shi, Yang Ding, Ge Gao. Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome[J]. Journal of Genetics and Genomics, 2018, 45(7): 373-379. doi: 10.1016/j.jgg.2018.05.005 |
[13] | Lei Chen, Long Jin, Mingzhou Li, Shilin Tian, Tiandong Che, Qianzi Tang, Jing Lan, Zhi Jiang, Ruiqiang Li, Yiren Gu, Xuewei Li, Jinyong Wang. Snapshot of Structural Variations in the Tibetan Wild Boar Genome at Single-Nucleotide Resolution[J]. Journal of Genetics and Genomics, 2014, 41(12): 653-657. doi: 10.1016/j.jgg.2014.10.001 |
[14] | Junwei Wang, Xiaoli Wang, Hong Xu, Huiwu Tang, Gaisheng Zhang, Yao-Guang Liu. Structural and Expressional Variation Analyses of Mitochondrial Genomes Reveal Candidate Transcripts for the SV Cytoplasmic Male Sterility in Wheat (Triticum aestivum L.)[J]. Journal of Genetics and Genomics, 2013, 40(8): 437-439. doi: 10.1016/j.jgg.2013.03.004 |
[15] | Cuiling Yuan, Hui Jiang, Honggang Wang, Kun Li, Heng Tang, Xianbin Li, Daolin Fu. Distribution, Frequency and Variation of Stripe Rust Resistance Loci Yr10, Lr34/Yr18 and Yr36 in Chinese Wheat Cultivars[J]. Journal of Genetics and Genomics, 2012, 39(11): 587-592. doi: 10.1016/j.jgg.2012.03.005 |
[16] | Xin Zhao, Jingyuan Lu, Zhonghua Zhang, Jiajin Hu, Sanwen Huang, Weiwei Jin. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships[J]. Journal of Genetics and Genomics, 2011, 38(1): 39-45. doi: 10.1016/j.jcg.2010.12.005 |
[17] | Huijuan Yin, Qin Yao, Zhongjian Guo, Fang Bao, Wei Yu, Jun Li, Keping Chen. Expression of non-structural protein NS3 gene of Bombyx mori densovirus (China isolate)[J]. Journal of Genetics and Genomics, 2008, 35(4): 239-244. doi: 10.1016/S1673-8527(08)60033-8 |
[18] | Dhanikachalam Velu, Kangayam M. Ponnuvel, Murugiah Muthulakshmi, Randhir K. Sinha, Syed M.H. Qadri. Analysis of genetic relationship in mutant silkworm strains of Bombyx mori using inter simple sequence repeat (ISSR) markers[J]. Journal of Genetics and Genomics, 2008, 35(5): 291-297. doi: 10.1016/S1673-8527(08)60042-9 |
[19] | Guoli Zhao, Keping Chen, Qin Yao, Weihua Wang. Cloning and characterization of nanos gene in silkworm Bombyx mori[J]. Journal of Genetics and Genomics, 2008, 35(2): 77-83. doi: 10.1016/S1673-8527(08)60012-0 |
[20] | Chaowen She, Jingyu Liu, Ying Diao, Zhongli Hu, Yunchun Song. The Distribution of Repetitive DNAs Along Chromosomes in Plants Revealed by Self-genomic in situ Hybridization[J]. Journal of Genetics and Genomics, 2007, 34(5): 437-448. doi: 10.1016/S1673-8527(07)60048-4 |