8.2
CiteScore
6.6
Impact Factor
Volume 36 Issue 9
Sep.  2009

Research progress in BYDV resistance genes derived from wheat and its wild relatives

doi: 10.1016/S1673-8527(08)60148-4
More Information
  • Corresponding author: E-mail address: xinzhy@mail.caas.net.cn (Zhiyong Xin)
  • Received Date: 2009-03-22
  • Accepted Date: 2009-06-23
  • Rev Recd Date: 2009-06-17
  • Available Online: 2009-09-25
  • Publish Date: 2009-09-20
  • Barley yellow dwarf virus (BYDV) may cause a serious disease affecting wheat worldwide. True resistance to BYDV is not naturally found in wheat. BYDV resistance genes are found in more than 10 wild relative species belonging to the genera of Thinopyrum, Agropyron, Elymus, Leymus, Roegneria, and Psathyrostachy. Through wide crosses combining with cell culture, use of ph mutants, or irradiation, 3 BYDV resistance genes in Th. intermedium, including Bdv2, Bdv3 and Bdv4, were introgressed into common wheat background. Various wheat-Th. intermedium addition and substitution, translocation lines with BYDV-resistance were developed and characterized, such as 7D-7Ai#1 (bearing Bdv2), 7B-7Ai#1, 7D-7E (bearing Bdv3), and 2D-2Ai-2 (bearing Bdv4) translocations. Three wheat varieties with BYDV resistance from Th. intermedium were developed and released in Australia and China, respectively. In addition, wheat-Agropyron cristatum translocation lines, wheat-Ag. pulcherrimum addition and substitution lines, and a wheat-Leymus multicaulis addition line (line24) with different resistance genes were developed. Cytological analysis, morphological markers, biochemical markers, and molecular markers associated with the alien chromatin carrying BYDV resistance genes were identified and applied to determine the presence of alien, chromosomes or segments, size of alien chromosome segments, and compositions of the alien chromosomes. Furthermore, some resistance-related genes, such asRGA, P450, HSP70, protein kinases, centrin, and transducin, were identified, which expressed specifically in the resistance translocation lines with Bdv2. These studies lay the foundations for developing resistant wheat cultivars and unraveling the resistance mechanism against BYDV.
  • [1]
    Anderson, J., Bucholtz, D., Greene, A. et al. Characterization of Wheatgrass-Derived Barley Yellow Dwarf Virus Resistance in a Wheat Alien Chromosome Substitution Line Phytopathol., 88 (1998),pp. 851-855
    [2]
    Ayala, L., Henry, M., Gonz, N. et al. Theor. Appl. Genet., 102 (2001),pp. 942-949
    [3]
    Ayala, L., Bariana, H., Singh, R. et al. Theor. Appl. Genet., 116 (2007),pp. 63-75
    [4]
    Ayala, L., Tourton, E., Mechanicos, A. et al. Genome, 52 (2009),pp. 537-546
    [5]
    Banks, P., Larkin, P., Bariana, H. et al. Genome, 38 (1995),pp. 395-405
    [6]
    Brettell, R., Banks, P., Cauderon, Y. et al. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat Ann. Appl. Biol., 113 (1988),pp. 599-603
    [7]
    Cao, Y., Zhang, M., Qiao, M. et al. Analysis of a winter wheat variety Linkang 1 Crop Genetic Resources (1999),p. 52
    [8]
    Cauderon, Y., Saigne, B., Dauge, M.
    [9]
    Chen, X., Xin, Z., Xiao, S. et al. Acta Agronomic Sinica, 24 (1998),pp. 16-20
    [10]
    Cheng, Z., He, X., Wu, M. et al. Nucleotide sequence of coat protein gene for GPV isolate of barley yellow dwarf virus and construction of expression plasmid for plant Sci. China Ser. C., 39 (1996),pp. 534-543
    [11]
    Crasta, O., Francki, M., Bucholt, D. et al. Identification and characterization of wheat-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance Genome, 43 (2000),pp. 698-706
    [12]
    D'Arcy, C., Domier, L., Mayo, M.
    [13]
    Friebe, B., Jiang, J., Raupp, W. et al. Characterization of wheat-alien translocations conferring resistance to disease and pests: Current status Euphytica., 91 (1996),pp. 59-87
    [14]
    Gao, L., Ma, Q., Liu, Y. et al. J. Appl. Genet., 50 (2009),pp. 89-98
    [15]
    Han, F., Zhang, X., Pu, X. et al. Sci. China Ser. C., 28 (1998),pp. 362-365
    [16]
    Hohmann, U., Badaeva, K., Busch, W. et al. Genome, 39 (1996),pp. 336-347
    [17]
    Jia, X., Nie, D., Hu, S. et al. Development and identification of a wheat germplasm with BYDV resistance Sci. China Ser. B, 25 (1995),pp. 1049-1053
    [18]
    Jiang, S., Zhang, L., Hu, J. et al. Genome, 47 (2004),pp. 1114-1121
    [19]
    Jiang, S., Hu, J., Yin, W.B. et al. Theor. Appl. Genet., 111 (2005),pp. 923-931
    [20]
    Jiang, S., Yin, W., Hu, J. et al. Isolation of expressed sequences from a specific chromosome of Thinopyrum intermedium infected by BYDV Genome, 52 (2009),pp. 68-76
    [21]
    Jin, H., Domier, L., Kolb, F. et al. Identification of Quantitative Loci for tolerance to Barley Yellow Dwarf Virus in Oat Phytopathol., 88 (1998),pp. 410-415
    [22]
    Kong, K., Anderson, J., Ohm, H. Plant Breed. (2009)
    [23]
    Larkin, P., Baeva, K., Banks, P. et al. Genome, 38 (1995),pp. 385-394
    [24]
    Larkin, P., Kleven, S., Banks, P.
    [25]
    Li, L., Yang, X., Li, X. et al. Scientia Agricaltural Sinica., 31 (1998),pp. 1-6
    [26]
    Lin, Z., Huang, D., Du, L. et al. Plant Breed., 125 (2006),pp. 114-119
    [27]
    Lin, Z., Cui, Z., Zeng, X. et al. Euphytica, 158 (2007),pp. 109-118
    [28]
    Liu, X., Zhang, Z., Liu, Y. et al. Acta Genetica Sinica, 32 (2005),pp. 942-947
    [29]
    Liu, Y., Qian, Y., Zhao, M. et al. Acta Phytopathology Sinica, 32 (2002),pp. 247-251
    [30]
    Nie, D., Jia, X., Hu, S. et al. Characterization of a wheat germplasm for BYDV resistance using biochemical markers Acta Genetica Sinica, 21 (1994),pp. 468-473
    [31]
    Niks, R., Habekuß, A., Bekele, B. et al. A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus Theor. Appl. Genet., 109 (2004),pp. 1536-1543
    [32]
    Ohm, H., Anderson, J., Sharma, H. et al. Registration of yellow dwarf virus resistant wheat germplasm line P961341 Crop Sci., 45 (2005),pp. 805-806
    [33]
    Ordon, F, Haberuss, et al. Virus resistance in cereals: Sources of resistance, genetics and breeding J. Phytopathol., 157 (2009),pp. 535-545
    [34]
    Sharma, H., Gill, B., Uyemoto, J. Phytopathol Z., 110 (1984),pp. 143-147
    [35]
    Sharma, H., Ohm, H., Goulart, L. et al. Genome, 38 (1995),pp. 406-413
    [36]
    Singh, R., Burnett, P., Albarrán, M. et al. Crop Sci., 33 (1993),pp. 231-234
    [37]
    Stoutjesdijk, P., Kammholz, S., Kleven, S. et al. Aust. J. Agric. Res., 52 (2001),pp. 383-1388
    [38]
    Toojinda, T., Broers, L., Chen, X. et al. Theor. Appl. Genet., 101 (2000),pp. 580-589
    [39]
    Wang, X., Chang, S., Jin, Z. et al. Nucleotide sequences of the coat protein and readthrough protein genes of the Chinese GAV isolate of Barley yellow dwarf virus Acta Virol., 45 (2001),pp. 249-252
    [40]
    Wu, D., Xin, Z., Chen, X. et al. Sci. China Ser. C, 42 (1999),pp. 178-184
    [41]
    Xin, Z., Brettell, R., Cheng, Z. et al. Characterization of a potential source of barley yellow dwarf virus resistance for wheat Genome, 30 (1988),pp. 250-257
    [42]
    Xin, Z., Xu, H., Chen, X. et al. Development of common wheat germplasm resistant to barley yellow dwarf virus by biotechnology Sci China Ser. B., 34 (1991),pp. 1055-1062
    [43]
    Xin, Z., Zhang, Z., Chen, X. et al. Euphytica, 119 (2001),pp. 161-165
    [44]
    Yang, X., Li, L., Li, X. et al. Acta Genetica Sinica, 26 (1999),pp. 370-376
    [45]
    Zhang, Z., Xin, Z., Ma, Y. et al. Sci. China Ser. C., 42 (1999),pp. 663-668
    [46]
    Zhang, Z., Xin, Z., Chen, X. et al. Molecular cytogenetic characterization of a new wheat line Yw443 with resistance to barley yellow dwarf virus Acta Genetica Sinica, 27 (2000),pp. 614-620
    [47]
    Zhang, Z., Xin, Z., Larkin, P. Genome, 44 (2001),pp. 1129-1135
    [48]
    Zhang, Z., Xu, J., Xu, Q. et al. Theor. Appl. Genet., 109 (2004),pp. 433-439
    [49]
    Zhao, M., Zhou, R., Jia, J. et al.
    [50]
    Zhu, S., Kolb, F., Kaeppler, H. Theor. Appl. Genet., 106 (2003),pp. 1300-1306
  • Relative Articles

    [1]Yifeng Huang, Kaixuan Cui, Zhen Zhang, Rongyao Chai, Hongguang Xie, Jianyao Shou, Junru Fu, Guolin Li, Jiyun Liu, Shuangqing Wu, Guochang Sun, Jianfu Zhang, Yiwen Deng, Zuhua He. Identification and fine-mapping of quantitative trait loci (QTL) conferring rice false smut resistance in rice[J]. Journal of Genetics and Genomics, 2023, 50(4): 276-279. doi: 10.1016/j.jgg.2022.11.010
    [2]Qiuhong Wu, Yongxing Chen, Beibei Li, Jing Li, Panpan Zhang, Jingzhong Xie, Huaizhi Zhang, Guanghao Guo, Ping Lu, Miaomiao Li, Keyu Zhu, Wenling Li, Tzion Fahima, Eviatar Nevo, Hongjie Li, Lingli Dong, Zhiyong Liu. Functional characterization of powdery mildew resistance gene MlIW172, a new Pm60 allele and its allelic variation in wild emmer wheat[J]. Journal of Genetics and Genomics, 2022, 49(8): 787-795. doi: 10.1016/j.jgg.2022.01.010
    [3]Yan Zhao, Xiaobo Zhu, Xuewei Chen, Jian-Min Zhou. From plant immunity to crop disease resistance[J]. Journal of Genetics and Genomics, 2022, 49(8): 693-703. doi: 10.1016/j.jgg.2022.06.003
    [4]Kunpeng Liu, Xiaogao Jin, Xiaoying Zhang, Hongkai Lian, Jianping Ye. The mechanisms of nucleotide actions in insulin resistance[J]. Journal of Genetics and Genomics, 2022, 49(4): 299-307. doi: 10.1016/j.jgg.2022.01.006
    [5]Jinyue Ge, Junrui Wang, Hongbo Pang, Fei Li, Danjing Lou, Weiya Fan, Ziran Liu, Jiaqi Li, Danting Li, Baoxuan Nong, Zongqiong Zhang, Yanyan Wang, Jingfen Huang, Meng Xing, Yamin Nie, Xiaorong Xiao, Fan Zhang, Wensheng Wang, Jianlong Xu, Sung Ryul Kim, Ajay Kohli, Guoyou Ye, Weihua Qiao, Qingwen Yang, Xiaoming Zheng. Genome-wide selection and introgression of Chinese rice varieties during breeding[J]. Journal of Genetics and Genomics, 2022, 49(5): 492-501. doi: 10.1016/j.jgg.2022.02.025
    [6]Pengfei Wang, Feixiang Qi, Honglin Yao, Xingbing Xu, Wenjun Li, Jianghu Meng, Qinglu Zhang, Weibo Xie, Yongzhong Xing. Fixation of hybrid sterility genes and favorable alleles of key yield-related genes with dominance contribute to the high yield of the Yongyou series of intersubspecific hybrid rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 448-457. doi: 10.1016/j.jgg.2022.02.027
    [7]Weiwei Fu, Rui Wang, Jiantao Yu, Dexiang Hu, Yudong Cai, Junjie Shao, Yu Jiang. GGVD: A goat genome variation database for tracking the dynamic evolutionary process of selective signatures and ancient introgressions[J]. Journal of Genetics and Genomics, 2021, 48(3): 248-256. doi: 10.1016/j.jgg.2021.03.003
    [8]Yan Li, Dong-Dong Wu. Finding unknown species in the genomes of extant species[J]. Journal of Genetics and Genomics, 2021, 48(10): 867-871. doi: 10.1016/j.jgg.2021.05.013
    [9]Zhuo Chen, Xiuxiu Li, Hongwei Lu, Qiang Gao, Huilong Du, Hua Peng, Peng Qin, Chengzhi Liang. Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice[J]. Journal of Genetics and Genomics, 2020, 47(10): 637-649. doi: 10.1016/j.jgg.2020.10.006
    [10]Zhixiong Chen, Wen Zhao, Xiaobo Zhu, Chengdong Zou, Junjie Yin, Mawsheng Chern, Xiaogang Zhou, Heng Ying, Xin Jiang, Yongzhen Li, Haicheng Liao, Mengping Cheng, Weitao Li, Min He, Jing Wang, Jichun Wang, Bingtian Ma, Jirui Wang, Shigui Li, Lihuang Zhu, Xuewei Chen. Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis[J]. Journal of Genetics and Genomics, 2018, 45(12): 663-672. doi: 10.1016/j.jgg.2018.10.007
    [11]Meng Li, Zongxiang Tang, Ling Qiu, Yangyang Wang, Shuyao Tang, Shulan Fu. Identification and Physical Mapping of New PCR-Based Markers Specific for the Long Arm of Rye (Secale cereale L.) Chromosome 6[J]. Journal of Genetics and Genomics, 2016, 43(4): 199-206. doi: 10.1016/j.jgg.2015.11.005
    [12]Qi Zheng, Qiaoling Luo, Zhixia Niu, Hongwei Li, Bin Li, Steven S. Xu, Zhensheng Li. Variation in Chromosome Constitution of the Xiaoyan Series Partial Amphiploids and Its Relationship to Stripe Rust and Stem Rust Resistance[J]. Journal of Genetics and Genomics, 2015, 42(11): 657-660. doi: 10.1016/j.jgg.2015.08.004
    [13]Haoxun Li, Renchun Fan, Shulan Fu, Bo Wei, Shichang Xu, Jing Feng, Qi Zheng, Xianping Wang, Fangpu Han, Xiangqi Zhang. Development of Triticum aestivum–Leymus mollis Translocation Lines and Identification of Resistance to Stripe Rust[J]. Journal of Genetics and Genomics, 2015, 42(3): 129-132. doi: 10.1016/j.jgg.2014.11.008
    [14]Yuhui Fang, Jingya Yuan, Zhangjun Wang, Haiyan Wang, Jin Xiao, Zhixi Yang, Ruiqi Zhang, Zengjun Qi, Weigang Xu, Lin Hu, Xiu-E Wang. Development of T. aestivum L.–H. californicum Alien Chromosome Lines and Assignment of Homoeologous Groups of Hordeum californicum Chromosomes[J]. Journal of Genetics and Genomics, 2014, 41(8): 439-447. doi: 10.1016/j.jgg.2014.06.004
    [15]Yan Zhang, Thomas Lubberstedt, Mingliang Xu. The Genetic and Molecular Basis of Plant Resistance to Pathogens[J]. Journal of Genetics and Genomics, 2013, 40(1): 23-35. doi: 10.1016/j.jgg.2012.11.003
    [16]Qingshu Meng, Kaifu Chen, Lina Ma, Songnian Hu, Jun Yu. A systematic identification of Kolobok superfamily transposons in Trichomonas vaginalis and sequence analysis on related transposases[J]. Journal of Genetics and Genomics, 2011, 38(2): 63-70. doi: 10.1016/j.jcg.2011.01.003
    [17]Junzhou Li, Deping Wang, Yan Xie, Hongliang Zhang, Guanglong Hu, Jinjie Li, Anyong Dai, Lifeng Liu, Zichao Li. Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes[J]. Journal of Genetics and Genomics, 2011, 38(11): 547-556. doi: 10.1016/j.jgg.2011.08.005
    [18]Yuchun Rao, Guojun Dong, Dali Zeng, Jiang Hu, Longjun Zeng, Zhengyu Gao, Guanghen Zhang, Longbiao Guo, Qian Qian. Genetic analysis of leaffolder resistance in rice[J]. Journal of Genetics and Genomics, 2010, 37(5): 325-331. doi: 10.1016/S1673-8527(09)60050-3
    [19]Hekun Liu, Suyun Chen, Sizhong Zhang, Cuiying Xiao, Yan Ren, Haoming Tian, Xuefei Li. Adiponectin Gene Variation −4522C/T Is Associated with Type 2 Diabetic Obesity and Insulin Resistance in Chinese[J]. Journal of Genetics and Genomics, 2007, 34(10): 877-884. doi: 10.1016/S1673-8527(07)60099-X
    [20]Fanghui Liu, Yongchun Niu, Hui Deng, Genjia Tan. Mapping of a Major Stripe Rust Resistance Gene in Chinese Native Wheat Variety Chike Using Microsatellite Markers[J]. Journal of Genetics and Genomics, 2007, 34(12): 1123-1130. doi: 10.1016/S1673-8527(07)60128-3
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-0602468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.3 %FULLTEXT: 29.3 %META: 67.8 %META: 67.8 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.9 %其他: 2.9 %China: 22.6 %China: 22.6 %Germany: 1.9 %Germany: 1.9 %India: 1.4 %India: 1.4 %Iran (ISLAMIC Republic Of): 4.3 %Iran (ISLAMIC Republic Of): 4.3 %Russian Federation: 1.4 %Russian Federation: 1.4 %Switzerland: 1.0 %Switzerland: 1.0 %Turkey: 1.4 %Turkey: 1.4 %United Kingdom: 6.3 %United Kingdom: 6.3 %United States: 56.7 %United States: 56.7 %其他ChinaGermanyIndiaIran (ISLAMIC Republic Of)Russian FederationSwitzerlandTurkeyUnited KingdomUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (140) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return