5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 8
Aug.  2009
Turn off MathJax
Article Contents

Implication of snoRNA U50 in human breast cancer

doi: 10.1016/S1673-8527(08)60134-4
More Information
  • Corresponding author: E-mail address: jdong2@emory.edu (Jin-Tang Dong)
  • Received Date: 2009-03-23
  • Accepted Date: 2009-04-27
  • Rev Recd Date: 2009-04-20
  • Available Online: 2009-08-14
  • Publish Date: 2009-08-20
  • Deletion of chromosome 6q is frequent in breast cancer, and the deletion often involves a region in 6q14-q16. At present, however, theunderlying tumor suppressor gene has not been established. Based on a recent study identifying snoRNA U50 as a candidate for the6q14-16 tumor suppressor gene in prostate cancer, we investigated whether U50 is also involved in breast cancer. PCR-based approachesshowed that U50 underwent frequent genomic deletion and transcriptional downregulation in cell lines derived from breast cancer. Mutation screening identified the same 2-bp deletion of U50 as in prostate cancer in both cell lines and primary tumors from breast cancer, andthe deletion was both somatic and in germline. Genotyping of a cohort of breast cancer cases and controls for the mutation demonstratedthat, while homozygous genotype of the mutation was rare, its heterozygous genotype occurred more frequently in women with breastcancer. Functionally, re-expression of U50 resulted in the inhibition of colony formation in breast cancer cell lines. These results suggestthat noncoding snoRNA U50 plays a role in the development and/or progression of breast cancer.
  • loading
  • [1]
    Abdollahi, A., Pisarcik, D., Roberts, D. et al. J. Biol. Chem., 278 (2003),pp. 6041-6049
    [2]
    Basyuk, E., Coulon, V., Le Digarcher, A. et al. Mol. Cancer Res., 3 (2005),pp. 483-492
    [3]
    Callahan, R., Campbell, G. Mutations in human breast cancer: An overview J. Natl. Cancer Inst., 81 (1989),pp. 1780-1786
    [4]
    Cesari, R., Martin, E.S., Calin, G.A. et al. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 5956-5961
    [5]
    Devilee, P., van Vliet, M., van Sloun, P. et al. Allelotype of human breast carcinoma: A second major site for loss of heterozygosity is on chromosome 6q Oncogene, 6 (1991),pp. 1705-1711
    [6]
    Dong, J.T. Chromosomal deletions and tumor suppressor genes in prostate cancer Cancer Metastasis Rev., 20 (2001),pp. 173-193
    [7]
    Dong, J.T., Chen, C., Stultz, B.G. et al. Deletion at 13q21 is associated with aggressive prostate cancers Cancer Res., 60 (2000),pp. 3880-3883
    [8]
    Dong, X.Y., Chen, C., Sun, X. et al. Cancer Res., 66 (2006),pp. 6998-7006
    [9]
    Dong, X.Y., Rodriguez, C., Guo, P. et al. Hum. Mol. Genet., 17 (2008),pp. 1031-1042
    [10]
    Dutrillaux, B., Gerbault-Seureau, M., Zafrani, B. Characterization of chromosomal anomalies in human breast cancer. A comparison of 30 paradiploid cases with few chromosome changes Cancer Genet. Cytogenet., 49 (1990),pp. 203-217
    [11]
    Foulkes, W.D., Ragoussis, J., Stamp, G.W. et al. Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma Br. J. Cancer, 67 (1993),pp. 551-559
    [12]
    Gold, B., Kirchhoff, T., Stefanov, S. et al. Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33 Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 4340-4345
    [13]
    Han, W., Han, M.R., Kang, J.J. et al. Genomic alterations identified by array comparative genomic hybridization as prognostic markers in tamoxifen-treated estrogen receptor-positive breast cancer BMC Cancer, 6 (2006),p. 92
    [14]
    Kishore, S., Stamm, S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C Science, 311 (2006),pp. 230-232
    [15]
    Knuutila, S., Aalto, Y., Autio, K. et al. DNA copy number losses in human neoplasms Am. J. Pathol., 155 (1999),pp. 683-694
    [16]
    Lee, J.H., Kavanagh, J.J., Wildrick, D.M. et al. Frequent loss of heterozygosity on chromosomes 6q, 11, and 17 in human ovarian carcinomas Cancer Res., 50 (1990),pp. 2724-2728
    [17]
    Li, Y., Huang, J., Zhao, Y.L. et al. Oncogene, 26 (2007),pp. 6220-6228
    [18]
    Matera, A.G., Terns, R.M., Terns, M.P. Non-coding RNAs: Lessons from the small nuclear and small nucleolar RNAs Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 209-220
    [19]
    Mattick, J.S. RNA regulation: A new genetics? Nat. Rev. Genet., 5 (2004),pp. 316-323
    [20]
    Mattick, J.S., Makunin, I.V. Small regulatory RNAs in mammals Hum. Mol. Genet., 14 (2005),pp. R121-R132
    [21]
    Mertens, F., Johansson, B., Hoglund, M. et al. Chromosomal imbalance maps of malignant solid tumors: A cytogenetic survey of 3185 neoplasms Cancer Res., 57 (1997),pp. 2765-2780
    [22]
    Morinaga, N., Shitara, Y., Yanagita, Y. et al. Int. J. Oncol., 17 (2000),pp. 1125-1129
    [23]
    Mourtada-Maarabouni, M., Pickard, M.R., Hedge, V.L. et al. Oncogene, 28 (2009),pp. 195-208
    [24]
    Noviello, C., Courjal, F., Theillet, C. Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: Possibly four regions of deletion Clin. Cancer Res., 2 (1996),pp. 1601-1606
    [25]
    Orphanos, V., McGown, G., Hey, Y. et al. Proximal 6q, a region showing allele loss in primary breast cancer Br. J. Cancer, 71 (1995),pp. 290-293
    [26]
    Rodriguez, C., Causse, A., Ursule, E. et al. At least five regions of imbalance on 6q in breast tumors, combining losses and gains Genes Chromosomes Cancer, 27 (2000),pp. 76-84
    [27]
    Rosa-Rosa, J.M., Pita, G., Urioste, M. et al. Genome- wide linkage scan reveals three putative breast-cancer-susceptibility loci Am. J. Hum. Genet., 84 (2009),pp. 115-122
    [28]
    Sandhu, A.K., Kaur, G.P., Reddy, D.E. et al. A gene on 6q 14-21 restores senescence to immortal ovarian tumor cells Oncogene, 12 (1996),pp. 247-252
    [29]
    Schwendel, A., Richard, F., Langreck, H. et al. Chromosome alterations in breast carcinomas: Frequent involvement of DNA losses including chromosomes 4q and 21q Br. J. Cancer, 78 (1998),pp. 806-811
    [30]
    Seute, A., Sinn, H.P., Schlenk, R.F. et al. Clinical relevance of genomic aberrations in homogeneously treated high-risk stage II/III breast cancer patients Int. J. Cancer, 93 (2001),pp. 80-84
    [31]
    Sheng, Z.M., Marchetti, A., Buttitta, F. et al. Multiple regions of chromosome 6q affected by loss of heterozygosity in primary human breast carcinomas Br. J. Cancer, 73 (1996),pp. 144-147
    [32]
    Smith, C.M., Steitz, J.A. Mol. Cell. Biol., 18 (1998),pp. 6897-6909
    [33]
    Smith, R.A., Cokkinides, V., Eyre, H.J. Cancer screening in the United States, 2007: A review of current guidelines, practices, and prospects CA. Cancer J. Clin., 57 (2007),pp. 90-104
    [34]
    Sun, X., Frierson, H.F., Chen, C. et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer Nat. Genet., 37 (2005),pp. 407-412
    [35]
    Theile, M., Seitz, S., Arnold, W. et al. A defined chromosome 6q fragment (at D6S310) harbors a putative tumor suppressor gene for breast cancer Oncogene, 13 (1996),pp. 677-685
    [36]
    Varrault, A., Ciani, E., Apiou, F. et al. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 8835-8840
    [37]
    Zeller, C., Hinzmann, B., Seitz, S. et al. Oncogene, 22 (2003),pp. 2972-2983
    [38]
    Zhang, Y., Matthiesen, P., Siebert, R. et al. Hum. Genet., 103 (1998),pp. 727-729
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return