[1] |
Alizadeh, A.A., Eisen, M.B., Davis, R.E. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling Nature, 403 (2000),pp. 503-511
|
[2] |
Barad, O., Meiri, E., Avniel, A. et al. MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues Genome Res., 14 (2004),pp. 2486-2494
|
[3] |
Cai, Z., Goebel, R., Salavatipour, M.R. et al. Selecting dissimilar genes for multi-class classification, an application in cancer subtyping BMC Bioinformatics, 8 (2007),p. 206
|
[4] |
Calin, G.A., Ferracin, M., Cimmino, A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia N. Engl. J. Med., 353 (2005),pp. 1793-1801
|
[5] |
Furey, T.S., Cristianini, N., Duffy, N. et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data Bioinformatics, 16 (2000),pp. 906-914
|
[6] |
Guyon, I., Weston, J., Barnhill, S. et al. Gene selection for cancer classification using support vector machines Machine Learning, 46 (2002),pp. 389-422
|
[7] |
Johnson, S.M., Grosshans, H., Shingara, J. et al. RAS is regulated by the let-7 MicroRNA family Cell, 120 (2005),pp. 635-647
|
[8] |
Kohavi, R., John, G.H. Wrappers for feature subset selection Artificial Intelligence, 97 (1997),pp. 273-324
|
[9] |
Lassmann, S., Kreutz, C., Schoepflin, A. et al. A novel approach for reliable microarray analysis of microdissected tumor cells from formalin-fixed and paraffin-embedded colorectal cancer resection specimens J. Mol. Med., 87 (2009),pp. 211-224
|
[10] |
Li, J., Tang, X.L., Zhao, W. et al. A new framework for identifying differentially expressed genes Pattern Recognit., 40 (2007),pp. 3249-3262
|
[11] |
Lin, T.C., Liu, R.S., Chen, C.Y. et al. Pattern classification in DNA microarray data of multiple tumor types Pattern Recognit., 39 (2006),pp. 2426-2438
|
[12] |
Liu, K.H., Xu, C.G. A genetic programming-based approach to the classification of multiclass microarray datasets Bioinformatics, 25 (2009),pp. 331-337
|
[13] |
Lu, J., Getz, G., Miska, E.A. et al. MicroRNA expression profiles classify human cancers Nature, 435 (2005),pp. 834-838
|
[14] |
Neely, L.A., Patel, S., Garver, J. et al. A single-molecule method for the quantitation of microRNA gene expression Nat. Methods, 3 (2006),pp. 41-46
|
[15] |
Peng, S., Xu, Q., Ling, X.B. et al. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines FEBS Lett., 555 (2003),pp. 358-362
|
[16] |
Ramaswamy, S., Tamayo, P., Rifkin, R. et al. Multiclass cancer diagnosis using tumor gene expression signatures Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 15149-15154
|
[17] |
Reunanen, J. Overfitting in making comparisons between variable selection methods J. Mach. Learn. Res., 3 (2003),pp. 371-1382
|
[18] |
Schobesberger, M., Baltzer, A., Oberli, A. et al. Gene expression variation between distinct areas of breast cancer measured from paraffin-embedded tissue cores BMC Cancer, 8 (2008),p. 343
|
[19] |
Su, A.I., Welsh, J.B., Sapinoso, L.M. et al. Molecular classification of human carcinomas by use of gene expression signatures Cancer Res., 61 (2001),pp. 7388-7393
|
[20] |
Su, Y., Murali, T.M., Pavlovic, V. et al. RankGene: Identification of diagnostic genes based on expression data Bioinformatics, 19 (2003),pp. 1578-1579
|
[21] |
Tusher, V.G., Tibshirani, R., Chu, G. Significance analysis of microarrays applied to the ionizing radiation response Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5116-5121
|
[22] |
Wang, L., Zhu, J., Zou, H. Hybrid huberized support vector machines for microarray classification and gene selection Bioinformatics, 24 (2008),pp. 412-419
|
[23] |
Xu, R., Anagnostopoulos, G.C., Wunsch, D.C. Multiclass cancer classification using semisupervised ellipsoid ARTMAP and particle swarm optimization with gene expression data IEEE/ACM Trans. Comput. Biol. Bioinform., 4 (2007),pp. 65-77
|
[24] |
Yukinawa, N., Oba, S., Kato, K. et al. A multi-class predictor based on a probabilistic model: Application to gene expression profiling-based diagnosis of thyroid tumors BMC Genomics, 7 (2006),pp. 1-13
|
[25] |
Zhou, X., Tuck, D.P. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data Bioinformatics, 23 (2007),pp. 1106-1114
|