[1] |
Bendich, A.J. Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays, 6 (1987),pp. 279-282
|
[2] |
Block, M.D., Schell, J., Montagu, M.V. EMBO J., 4 (1985),pp. 1367-1372
|
[3] |
Bock, R. Sense from nonsense: How the genetic information of chloroplastsis altered by RNA editing Biochimie, 82 (2000),pp. 549-557
|
[4] |
Bock, R. Plastid biotechnology: Prospects for herbicide and insect resistance, metabolic engineering and molecular farming Curr. Opin. Biotechnol., 18 (2007),pp. 100-106
|
[5] |
Bock, R., Koop, H.-U. Extraplastidic site-specific factors mediate RNA editing in chloroplasts EMBO J., 16 (1997),pp. 3282-3288
|
[6] |
Bock, R., Kössel, H., Maliga, P. Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype EMBO J., 13 (1994),pp. 4623-4628
|
[7] |
Bock, R., Hermann, M., Kössel, H. In vivo dissection of cis-acting determinants for plastid RNA editing EMBO J, 15 (1996),pp. 5052-5059
|
[8] |
Boynton, J.E., Gillham, N.W., Harris, E.H. et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles Science, 240 (1988),pp. 1534-1538
|
[9] |
Carrer, H., Maliga, P. Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene Bio/Technology, 13 (1995),pp. 791-794
|
[10] |
Carrer, H., Hockenberry, T.N., Svab, Z. et al. Kanamycin resistance as a selectable marker for plastid transformation in tobacco Mol. Gen. Genet., 241 (1993),pp. 49-56
|
[11] |
Chakrabarti, S., Lutz, K., Lertwiriyawong, B. et al. Transgenic Res., 15 (2006),pp. 481-488
|
[12] |
Chaudhuri, S., Maliga, P. Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site EMBO J., 15 (1996),pp. 5958-5964
|
[13] |
Chebolu, S., Daniell, H. Plant Biotechnol. J., 5 (2007),pp. 230-239
|
[14] |
Corneille, S., Lutz, K., Svab, Z. et al. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system Plant J., 27 (2001),pp. 171-178
|
[15] |
Corneille, S., Lutz, K.A., Azhagiri, A.K. et al. Identification of functional lox sites in the plastid genome Plant J., 35 (2003),pp. 753-762
|
[16] |
Cosa, B.D., Moar, W., Lee, S.-B. et al. Nat. Biotechnol., 19 (2001),pp. 71-74
|
[17] |
Craig, W., Lenzi, P., Scotti, N. et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance Transgenic Res., 17 (2008),pp. 769-782
|
[18] |
Daniell, H., Chebolu, S., Kumar, S. et al. Chloroplast-derived vaccine antigens and other therapeutic proteins Vaccine, 23 (2005),pp. 1779-1783
|
[19] |
Daniell, H., Datta, R., Varma, S. et al. Containment of herbicide resistance through genetic engineering of the chloroplast genome Nat. Biotechnol., 16 (1998),pp. 345-348
|
[20] |
Daniell, H., Kumar, S., Dufourmantel, N. Breakthrough in chloroplast genetic engineering of agronomically important crops Trends Biotechnol., 23 (2005),pp. 238-245
|
[21] |
Daniell, H., Lee, S.B., Panchal, T. et al. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts J. Mol. Biol., 311 (2001),pp. 1001-1009
|
[22] |
Daniell, H., Muthukumar, B., Lee, S.B. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection Curr. Genet., 39 (2001),pp. 109-116
|
[23] |
Daniell, H., Vivekananda, J., Nielsen, B.L. et al. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 88-92
|
[24] |
DeGray, G., Rajasekaran, K., Smith, F. et al. Plant Physiol., 127 (2001),pp. 852-862
|
[25] |
Dufourmantel, N., Pelissier, B., Garcon, F. et al. Generation of fertile transplastomic soybean Plant Mol. Biol., 55 (2004),pp. 479-489
|
[26] |
Dufourmantel, N., Tissot, G., Goutorbe, F. et al. Plant Mol. Biol., 58 (2005),pp. 659-668
|
[27] |
Eibl, C., Zou, Z., Beck, A. et al. Plant J., 19 (1999),pp. 333-345
|
[28] |
Faye, L., Daniell, H. Novel pathways for glycoprotein import into chloroplasts Plant Biotechnol. J., 4 (2006),pp. 275-279
|
[29] |
Fischer, N., Stampacchia, O., Redding, K. et al. Selectable marker recycling in the chloroplast Mol. Gen. Genet., 251 (1996),pp. 373-380
|
[30] |
Golds, T., Maliga, P., Koop, H.U. Nat. Biotechnol., 11 (1993),pp. 95-97
|
[31] |
Goldschmidt-Clermont, M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: A selectable marker for site-directed transformation of chlamydomonas Nucl. Acids Res., 19 (1991),pp. 4083-4089
|
[32] |
Gruissem, W., Tonkyn, J.C. Control mechanisms of plastid gene expression CRC Crit. Rev. Plant Sci., 12 (1993),pp. 19-55
|
[33] |
Hagemann R. (2004). The sexual inheritance of plant organelles. In Molecular Biology and Biotechnology of Plant Organelles, pp. 93–113.
|
[34] |
Hajdukiewicz, P.T.J., Gilbertson, L., Staub, J.M. Multiple pathways for Cre/lox-mediated recombination in plastids Plant J., 27 (2001),pp. 161-170
|
[35] |
Hayes, M.L., Reed, M.L., Hegeman, C.E. et al. Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro Nucl. Acids Res., 34 (2006),pp. 3742-3754
|
[36] |
Hoch, B., Maier, R.M., Appel, K. et al. Editing of a chloroplast mRNA by creation of an initiation codon Nature, 353 (1991),pp. 178-180
|
[37] |
Hou, B.K., Zhou, Y.H., Wan, L.H. et al. Chloroplast transformation in oilseed rape Transgenic Res., 12 (2003),pp. 111-114
|
[38] |
Iamtham, S., Day, A. Removal of antibiotic resistance genes from transgenic tobacco plastids Nat. Biotechnol., 18 (2000),pp. 1172-1176
|
[39] |
Kanamoto, H., Yamashita, A., Asao, H. et al. Transgenic Res., 15 (2006),pp. 205-217
|
[40] |
Karcher, D., Kahlau, S., Bock, R. Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts RNA, 14 (2008),pp. 217-224
|
[41] |
Keravala, A., Groth, A., Jarrahian, S. et al. A diversity of serine phage integrases mediate site-specific recombination in mammalian cells Mol. Genet. Genomics, 276 (2006),pp. 135-146
|
[42] |
Kindle, K.L., Richards, K.L., Stern, D.B. Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 1721-1725
|
[43] |
Kittiwongwattana, C., Lutz, K., Clark, M. et al. Plastid marker gene excision by the phiC31 phage site-specific recombinase Plant Mol. Biol., 64 (2007),pp. 137-143
|
[44] |
Klaus, S.M.J., Huang, F.C., Golds, T.J. et al. Generation of marker-free plastid transformants using a transiently cointegrated selection gene Nat. Biotechnol., 22 (2004),pp. 225-229
|
[45] |
Koop, H.U., Kofer, W.
|
[46] |
Koop, H.U., Steinmüller, K., Wagner, H. et al. Planta, 199 (1996),pp. 193-201
|
[47] |
Kota, M., Daniell, H., Varma, S. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 1840-1845
|
[48] |
Kumar, S., Dhingra, A., Daniell, H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes Plant Mol. Biol., 56 (2004),pp. 203-216
|
[49] |
Kumar, S., Dhingra, A., Daniell, H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance Plant Physiol., 136 (2004),pp. 2843-2854
|
[50] |
Kuroda, H., Maliga, P. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs Nucl. Acids Res., 29 (2001),pp. 970-975
|
[51] |
Kuroda, H., Maliga, P. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts Plant Physiol., 125 (2001),pp. 430-436
|
[52] |
Liu, C.W., Lin, C.C., Chen, J. et al. Plant Cell Rep., 26 (2007),pp. 1733-1744
|
[53] |
Lössl, A., Eibl, C., Harloff, H.J. et al. Plant Cell Rep., 21 (2003),pp. 891-899
|
[54] |
Lee, S.B., Kwon, H.B., Kwon, S.J. et al. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance Mol. Breed., 11 (2003),pp. 1-13
|
[55] |
Lee, S.M., Kang, K., Chung, H. et al. Mol. Cells, 21 (2006),pp. 401-410
|
[56] |
Lelivelt, C., McCabe, M., Newell, C. et al. Plant Mol. Biol., 58 (2005),pp. 763-774
|
[57] |
Lossl, A., Bohmert, K., Harloff, H. et al. Plant Cell Physiol., 46 (2005),pp. 1462-1471
|
[58] |
Lutz, K.A., Maliga, P. Construction of marker-free transplastomic plants Curr. Opin. Biotechnol., 18 (2007),pp. 107-114
|
[59] |
Lutz, K.A., Knapp, J.E., Maliga, P. Expression of bar in the plastid genome confers herbicide resistance Plant Physiol., 125 (2001),pp. 1585-1590
|
[60] |
Lutz, K.A., Bosacchi, M.H., Maliga, P. Plastid marker-gene excision by transiently expressed CRE recombinase Plant J., 45 (2006),pp. 447-456
|
[61] |
Lutz, K.A., Svab, Z., Maliga, P. Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system Nat. Protocols, 1 (2006),pp. 900-910
|
[62] |
Lutz, K.A., Azhagiri, A.K., Tungsuchat-Huang, T. et al. A guide to choosing vectors for transformation of the plastid genome of higher plants Plant Physiol., 145 (2007),pp. 1201-1210
|
[63] |
Lutz, K.A., Corneille, S., Azhagiri, A.K. et al. A novel approach to plastid transformation utilizes the phiC31 phage integrase Plant J., 37 (2004),pp. 906-913
|
[64] |
Magee, A., Coyne, S., Murphy, D. et al. T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype Transgenic Res., 13 (2004),pp. 325-337
|
[65] |
Maliga, P. Engineering the plastid genome of higher plants Curr. Opin. Plant Biol., 5 (2002),pp. 164-172
|
[66] |
Maliga, P. Progress towards commercialization of plastid transformation technology Trends Biotechnol., 21 (2003),pp. 20-28
|
[67] |
Maliga, P. Plastid transformation in higher plants Annu. Rev. Plant Biol., 55 (2004),pp. 289-313
|
[68] |
McBride, K.E., Schaaf, D.J., Daley, M. et al. Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 7301-7305
|
[69] |
McCabe, M.S., Klaas, M., Rabade, N. et al. Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen Plant Biotechnol. J., 6 (2008),pp. 914-929
|
[70] |
Millán, A.F.S., Mingo-Castel, A., Miller, M. et al. A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation Plant Biotechnol. J., 1 (2003),pp. 71-79
|
[71] |
Molina, A., Hervás-Stubbs, S., Daniell, H. et al. High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts Plant Biotechnol. J., 2 (2004),pp. 141-153
|
[72] |
Muhlbauer, S.K., Koop, H.U. External control of transgene expression in tobacco plastids using the bacterial lac repressor Plant J., 43 (2005),pp. 941-946
|
[73] |
Nakashita, H., Arai, Y., Shikanai, T. et al. Introduction of bacterial metabolism into higher plants by polycistronic transgene expression Biosci. Biotechnol. Biochem., 65 (2001),pp. 1688-1691
|
[74] |
Nugent, G.D., Coyne, S., Nguyen, T.T. et al. Plant Sci., 170 (2006),pp. 135-142
|
[75] |
O'Neillt, C., Horvath, G.V., Horvath, E. et al. Chloroplast transformation in plants: Polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems Plant J., 3 (1993),pp. 729-738
|
[76] |
Okumura, S., Sawada, M., Park, Y. et al. Transgenic Res., 15 (2006),pp. 637-646
|
[77] |
Rhodes, D., Hanson, A.D. Quaternary ammonium and tertiary sulfonium compounds in higher plants Annu. Rev. Plant Physiol. Plant Mol. Biol., 44 (1993),pp. 357-384
|
[78] |
Roffey, R.A., Golbeck, J.H., Hille, C.R. et al. Photosynthetic electron transport in genetically altered photosystem II reaction centers of chloroplasts Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 9122-9126
|
[79] |
Ruf, S., Hermann, M., Berger, I.J. et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit Nat. Biotechnol., 19 (2001),pp. 870-875
|
[80] |
Ruiz, O.N., Daniell, H. Plant Physiol., 138 (2005),pp. 1232-1246
|
[81] |
Rumeau, D., Becuwe-Linka, N., Beyly, A. et al. New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants Plant Cell, 17 (2005),pp. 219-232
|
[82] |
Sidorov, V.A., Kasten, D., Pang, S.Z. et al. Stable chloroplast transformation in potato: Use of green fluorescent protein as a plastid marker Plant J., 19 (1999),pp. 209-216
|
[83] |
Sikdar, S.R., Serino, G., Chaudhuri, S. et al. Plant Cell Rep., 18 (1998),pp. 20-24
|
[84] |
Skarjinskaia, M., Svab, Z., Maliga, P. Transgenic Res., 12 (2003),pp. 115-122
|
[85] |
Sporlein, B., Streubel, M., Dahlfeld, G. et al. PEG-mediated plastid transformation: A new system for transient gene expression assays in chloroplasts Theor. Appl. Genet., 82 (1991),pp. 717-722
|
[86] |
Staub, J.M., Maliga, P. Expression of a chimeric uidA gene. indicates that polycistronic mRNAs are efficiently translated in tobacco plastids Plant J., 7 (1995),pp. 845-848
|
[87] |
Staub, J.M., Garcia, B., Graves, J. et al. High-yield production of a human therapeutic protein in tobacco chloroplasts Nat. Biotech., 18 (2000),pp. 333-338
|
[88] |
Sutton, C.A., Zoubenko, O.V., Hanson, M.R. et al. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited Mol. Cell. Biol., 15 (1995),pp. 1377-1381
|
[89] |
Svab, Z., Maliga, P. Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 913-917
|
[90] |
Svab, Z., Hajdukiewicz, P., Maliga, P. Stable transformation of plastids in higher plants Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 8526-8530
|
[91] |
Thomson, J.G., Ow, D.W. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes Genesis, 44 (2006),pp. 465-476
|
[92] |
Tsudzuki, T., Wakasugi, T., Sugiura, M. Comparative analysis of RNA editing sites in higher plant chloroplasts J. Mol. Evol., 53 (2001),pp. 327-332
|
[93] |
Verma, D., Daniell, H. Chloroplast vector systems for biotechnology applications Plant Physiol., 145 (2007),pp. 1129-1143
|
[94] |
Watson, J., Koya, V., Leppla, S.H. et al. Vaccine, 22 (2004),pp. 4374-4384
|
[95] |
Wurbs, D., Ruf, S., Bock, R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome Plant J., 49 (2007),pp. 276-288
|
[96] |
Ye, G.-N., Colburn, S.M., Xu, C.W. et al. Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance Plant Physiol., 133 (2003),pp. 402-410
|
[97] |
Zhang, J., Tan, W., Yang, X.H. et al. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco Plant Cell Rep., 27 (2008),pp. 1113-1124
|
[98] |
Zou, Z., Eibl, C., Koop, H.U. The stem-loop region of the tobacco psbA 5′UTR is an important determinant of mRNA stability and translation efficiency Mol. Genet. Genomics, 269 (2003),pp. 340-349
|
[99] |
Zoubenko, O.V., Allison, L.A., Svab, Z. et al. Efficient targeting of foreign genes into the tobacco plastid genome Nucl. Acids Res., 22 (1994),pp. 3819-3824
|
[100] |
Zubko, M.K., Zubko, E.I., Zuilen, K.V. et al. Stable transformation of petunia plastids Transgenic Res., 13 (2004),pp. 523-530
|