5.9
CiteScore
5.9
Impact Factor
Volume 36 Issue 2
Feb.  2009
Turn off MathJax
Article Contents

Global view of bionetwork dynamics: adaptive landscape

doi: 10.1016/S1673-8527(08)60093-4
More Information
  • Corresponding author: E-mail address: aoping@u.washington.edu (Ping Ao)
  • Received Date: 2008-09-21
  • Accepted Date: 2008-10-18
  • Rev Recd Date: 2008-10-14
  • Available Online: 2009-02-13
  • Publish Date: 2009-02-20
  • Based on recent work, I will give a nontechnical brief review of a powerful quantitative concept in biology, adaptive landscape, initially proposed by S. Wright over 70 years ago, reintroduced by one of the founders of molecular biology and by others in different biological contexts, but apparently forgotten by modern biologists for many years. Nevertheless, this concept finds an increasingly important role in the development of systems biology and bionetwork dynamics modeling, from phage lambda genetic switch to endogenous network for cancer genesis and progression. It is an ideal quantification to describe the robustness and stability of bionetworks. Here, I will first introduce five landmark proposals in biology on this concept, to demonstrate an important common thread in theoretical biology. Then I will discuss a few recent results, focusing on the studies showing theoretical consistency of adaptive landscape. From the perspective of a working scientist and of what is needed logically for a dynamical theory when confronting empirical data, the adaptive landscape is useful both metaphorically and quantitatively, and has captured an essential aspect of biological dynamical processes. Though at the theoretical level the adaptive landscape must exist and it can be used across hierarchical boundaries in biology, many associated issues are indeed vague in their initial formulations and their quantitative realizations are not easy, and are good research topics for quantitative biologists. I will discuss three types of open problems associated with the adaptive landscape in a broader perspective.
  • loading
  • [1]
    Aloy, P., Russell, R.B. Targeting and tinkering with interaction networks Nature Chem. Biol., 4 (2008),pp. 666-673
    [2]
    Andrews, P.W. From teratocarcinomas to embryonic stem cells Philos. Trans. R. Soc. Lond. B Biol. Sci., 357 (2002),pp. 405-417
    [3]
    Ao, P. Potential in stochastic differential equations: Novel construction J. Phys., A37 (2004),pp. L25-L30
    [4]
    Ao, P. Laws in Darwinian evolutionary theory Phys. Life Rev., 2 (2005),pp. 117-156
    [5]
    Ao, P. Metabolic network modeling: Including stochastic effects Comp. Chem. Eng., 29 (2005),pp. 2297-2303
    [6]
    Ao, P. Orders of magnitude change in phenotype rate caused by mutations Cell Oncol., 29 (2007),pp. 67-69
    [7]
    Ao, P. Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics Commun. Theor. Phys., 49 (2008),pp. 1073-1090
    [8]
    Ao, P., Galas, D., Hood, L. et al. Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution Med. Hypotheses, 70 (2008),pp. 678-684
    [9]
    Ao, P., Kwon, C., Qian, H. On the existence of potential landscape in the evolution of complex systems Complexity, 12 (2007),pp. 19-27
    [10]
    Ao, P., Lee, L.W., Lidstrom, M.E. et al. Chin. J. Biotech., 24 (2008),pp. 980-994
    [11]
    Arnold, S.J., Pfrender, M.E., Jones, A.G. The adaptive landscape as a conceptual bridge between micro- and macroevolution Genetica, 112 (2001),pp. 9-32
    [12]
    Auffray, C., Chen, Z., and Hood, L. (2009). Systems medicine: The future of medical genomics and healthcare. Genome Medicine (in press).
    [13]
    Auffray, C., Nottale, L. Scale relativity theory and integrative systems biology: 1 Founding principles and scale laws Prog. Biophys. Mol. Biol., 97 (2008),pp. 115-157
    [14]
    Blake, W.J., Kaern, M., Cantor, C.R. et al. Noise in eukaryotic gene expression Nature, 422 (2003),pp. 633-637
    [15]
    Brenner, S. Theoretical biology in the third millennium Phil. Trans. Roy. Soc. London B, 354 (1999),pp. 1963-1965
    [16]
    Bryngelson, J.D., Onuchic, J.N., Socci, N.D. et al. Funnels, pathways, and the energy landscape of protein-folding—a synthesis Proteins: Structure, Function, and Bioinformatics, 21 (1995),pp. 167-195
    [17]
    Cao, Y.F., Liang, J. Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability BMC Syst. Biol., 2 (2008),p. 30
    [18]
    Chabot, J.R., Pedraza, J.M., Luitel, P. et al. Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock Nature, 450 (2007),pp. 1249-1252
    [19]
    Delbruck, M. (1949). Discussion in Unités biologiquées de continuité génétique. (International Symposium CNRS 8, Paris), pp. 33–35.
    [20]
    Dill, K.A., Bromberg, S., Yue, K.Z. et al. Principles of protein-folding: A perspective from simple exact models Protein Sci., 4 (1995),pp. 561-602
    [21]
    Dill, K.A., Chan, H.S. From Levinthal to pathways to funnels Nat. Struct. Biol., 4 (1997),pp. 10-19
    [22]
    Elf, J., Li, G.W., Xie, X.S. Probing transcription factor dynamics at the single-molecule level in a living cell Science, 316 (2007),pp. 1191-1194
    [23]
    Ellegren, H., Sheldon, B.C. Genetic basis of fitness differences in natural population Nature, 452 (2008),pp. 169-175
    [24]
    Endler, J.A.
    [25]
    Feng, J., Kurtz, T.G.
    [26]
    Fisher, R.A.
    [27]
    Frauenfelder, H., Fenimore, P.W., Chen, G. et al. Protein folding is slaved to solvent motions Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 15469-15472
    [28]
    Frauenfelder, H., Sligar, S.G., Wolynes, P.G. The energy landscapes and motions of proteins Science, 254 (1991),pp. 1598-1603
    [29]
    Gadgil, C., Lee, C.H., Othmer, H.G. A stochastic analysis of first-order reaction networks Bull. Math. Biol., 67 (2005),pp. 901-946
    [30]
    Gillespie, D.T. Stochastic simulation of chemical kinetics Ann. Rev. Phys. Chem., 58 (2007),pp. 35-55
    [31]
    Haddad, W.M., Chellaboina, V.S.
    [32]
    Haldane, J.B.S. A defense of beanbag genetics Intl. J. Epidemiol., 37 (2008),pp. 435-442
    [33]
    Han, J.D.J. Understanding biological functions through molecular networks Cell Res., 18 (2008),pp. 224-237
    [34]
    Hanson, S.M., Schnell, S. Reactant stationary approximation in enzyme kinetics J. Phys. Chem. A, 112 (2008),pp. 8654-8658
    [35]
    Hemberg, M., Barahona, M. Perfect sampling of the Master equation for gene regulatory networks Biophys. J., 93 (2007),pp. 401-410
    [36]
    Hendry, A.P., Grant, P.R., Grant, B.R. et al. Possible human impacts on adaptive radiation: Beak size bimodality in Darwin's finches Proc. Roy. Soc. B, 273 (2006),pp. 1887-1894
    [37]
    Holmes, P. Ninety plus thirty years of nonlinear dynamics: Less is more and more is different Intl. J. Bifurc. Chaos, 15 (2005),pp. 2703-2716
    [38]
    Holmstrom, K., Jensen, H.J. Who runs fastest in an adaptive landscape: Sexual versus asexual reproduction Physica A, 337 (2004),pp. 185-195
    [39]
    Hood, L. Systems biology: Integrating technology, biology, and computation Mech. Aging Dev., 124 (2003),pp. 9-16
    [40]
    Hopfield, J.J. Brain, neural networks, and computation Rev. Mod. Phys., 71 (1999),pp. S431-S437
    [41]
    Jacob, F., Monod, J. On regulation of gene activity Cold Spring Harbor Sym. Quant. Biol., 26 (1961),pp. 193-211
    [42]
    Kauffman, S.A.
    [43]
    Kussell, E., Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments Science, 309 (2005),pp. 2075-2078
    [44]
    Kwon, C., Ao, P., Thouless, D.J. Structure of stochastic dynamics near fixed points Proc. Natl. Acad. Sci. USA, 102 (2003),pp. 13029-13034
    [45]
    Lapidus, S., Han, B., Wang, J. Intrinsic noise, dissipation cost, and robustness of cellular networks: The underlying energy landscape of MAPK signal transduction Proc. Nat. Acad. Sci. USA, 105 (2008),pp. 6039-6044
    [46]
    Lee, L.W., Yin, L., Zhu, X.M. et al. Generic enzymatic rate equation under living conditions J. Biol. Syst., 15 (2007),pp. 495-514
    [47]
    Li, C.C.
    [48]
    Li, F.T., Long, T., Lu, Y. et al. The yeast cell-cycle network is robustly designed Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 4781-4786
    [49]
    Liu, D. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems J. Comp. Phys., 227 (2008),pp. 8672-8684
    [50]
    Lunzer, M., Milter, S.P., Felsheim, R. et al. The biochemical architecture of an ancient adaptive landscape Science, 310 (2005),pp. 499-501
    [51]
    Malyshev, V.A., Pirogov, S.A. Reversibility and irreversibility in stochastic chemical kinetics Russ. Math. Surv., 63 (2008),pp. 1-34
    [52]
    Mehta, P., Mukhopadhyay, R., Wingreen, N.S. Exponential sensitivity of noise-driven switching in genetic networks Phys. Biol. (2008)
    [53]
    Milton, J.G., Cabrera, J.L., Ohira, T. Unstable dynamical systems: Delays, noise and control EPL, 83 (2008),p. 48001
    [54]
    Morelli, M.J., Tanase-Nicola, S., Allen, R.J. et al. Reaction coordinates for the flipping of genetic switches Biophys. J., 94 (2008),pp. 3413-3423
    [55]
    Novick, A., Weiner, M. Enzyme induction as an all-or-none phenomenon Proc. Natl. Acad. Sci. USA, 43 (1957),pp. 553-566
    [56]
    Oliveri, P., Tu, Q., Davidson, E.H. Global regulatory logic for specification of an embryonic cell lineage Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 5955-5962
    [57]
    Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M. et al. Empirical fitness landscapes reveal accessible evolutionary paths Nature, 445 (2007),pp. 383-386
    [58]
    Ptashne, M.
    [59]
    Qian, H. Cycle kinetics, steady-state thermodynamics and motors—a paradigm for living matter physics J. Phys. Cond. Mat., 17 (2005),pp. S3783-S3794
    [60]
    Qian, H., Beard, D.A., Liang, S.D. Stoichiometric network theory for nonequilibrium biochemical systems Eur. J. Biochem., 270 (2003),pp. 415-421
    [61]
    Raser, J.M., O'Shea, E.K. Noise in gene expression: Origins, consequences, and control Science, 309 (2005),pp. 2010-2013
    [62]
    Scott, M., Hwa, T., Ingalls, B. Deterministic characterization of stochastic genetic circuits Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 7402-7407
    [63]
    Service, R.F. Problem solved* (*Sort of) Science, 321 (2008),pp. 784-786
    [64]
    Slack, J.M.W. Timeline—Conrad Hal Waddington: The last renaissance biologist? Nat. Rev. Genet., 3 (2002),pp. 889-895
    [65]
    Thomas, S., Song, G., Amato, N.M. Protein folding by motion planning Phys. Biol., 2 (2005),pp. S148-S155
    [66]
    Toulouse, T., Ao, P., Shmulevich, I. et al. Noise in a small genetic circuit that undergoes bifurcation Complexity, 11 (2005),pp. 45-51
    [67]
    Varadhan, S.R.S. Large deviations Ann. Prob., 36 (2008),pp. 397-419
    [68]
    Waddington, C.H.
    [69]
    Wade, D.J. Energy landscapes and properties of biomolecules Phys. Biol., 2 (2005),pp. S86-S93
    [70]
    Walczak, A.M., Onuchic, J.N., Wolynes, P.G. Absolute rate theories of epigenetic stability Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 18926-18931
    [71]
    Wang, J., Huang, B., Xia, X.F. et al. Funneled landscape leads to robustness of cell networks: Yeast cell cycle PLoS Comp. Biol., 2 (2006),pp. 1385-1394
    [72]
    Wang, J., Xu, L., Wang, E.K. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 12271-12276
    [73]
    Waxman, D., Gavrilets, S. 20 questions on adaptive dynamics J. Evol. Biol., 18 (2005),pp. 1139-1154
    [74]
    Wright, S.
    [75]
    Wright, S. Surfaces of selective value revisited Am. Nat., 131 (1988),pp. 115-123
    [76]
    Yin, L., Ao, P. Existence and construction of dynamical potential in nonequilibrium processes without detailed balance J. Phys., A39 (2006),pp. 8593-8601
    [77]
    Yuan, Z.J., Zhang, J.J., Zhou, T.S. Noise-induced coherent switch Sci. China B, 51 (2008),pp. 562-569
    [78]
    Zhang, Y.P., Qian, M.P., Ouyang, Q. et al. Stochastic model of yeast cell-cycle network Physica D, 219 (2006),pp. 35-39
    [79]
    Zhou, Z., Ren, W.E.W. Adaptive minimum action method for the study of rare events J. Chem. Phys., 128 (2008),p. 104111
    [80]
    Zhu, X.-M., Yin, L., Ao, P. Limit cycle and conserved dynamics Int. J. Mod. Phys. B, 20 (2006),pp. 817-827
    [81]
    Zhu, X.-M., Yin, L., Hood, L. et al. Robustness, stability and efficiency of phage lambda genetic switch: Dynamical structure analysis J. Bioinf. Comput. Biol., 2 (2004),pp. 785-817
    [82]
    Zhu, X.M., Yin, L., Hood, L. et al.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return