[1] |
Aloy, P., Russell, R.B. Targeting and tinkering with interaction networks Nature Chem. Biol., 4 (2008),pp. 666-673
|
[2] |
Andrews, P.W. From teratocarcinomas to embryonic stem cells Philos. Trans. R. Soc. Lond. B Biol. Sci., 357 (2002),pp. 405-417
|
[3] |
Ao, P. Potential in stochastic differential equations: Novel construction J. Phys., A37 (2004),pp. L25-L30
|
[4] |
Ao, P. Laws in Darwinian evolutionary theory Phys. Life Rev., 2 (2005),pp. 117-156
|
[5] |
Ao, P. Metabolic network modeling: Including stochastic effects Comp. Chem. Eng., 29 (2005),pp. 2297-2303
|
[6] |
Ao, P. Orders of magnitude change in phenotype rate caused by mutations Cell Oncol., 29 (2007),pp. 67-69
|
[7] |
Ao, P. Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics Commun. Theor. Phys., 49 (2008),pp. 1073-1090
|
[8] |
Ao, P., Galas, D., Hood, L. et al. Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution Med. Hypotheses, 70 (2008),pp. 678-684
|
[9] |
Ao, P., Kwon, C., Qian, H. On the existence of potential landscape in the evolution of complex systems Complexity, 12 (2007),pp. 19-27
|
[10] |
Ao, P., Lee, L.W., Lidstrom, M.E. et al. Chin. J. Biotech., 24 (2008),pp. 980-994
|
[11] |
Arnold, S.J., Pfrender, M.E., Jones, A.G. The adaptive landscape as a conceptual bridge between micro- and macroevolution Genetica, 112 (2001),pp. 9-32
|
[12] |
Auffray, C., Chen, Z., and Hood, L. (2009). Systems medicine: The future of medical genomics and healthcare. Genome Medicine (in press).
|
[13] |
Auffray, C., Nottale, L. Scale relativity theory and integrative systems biology: 1 Founding principles and scale laws Prog. Biophys. Mol. Biol., 97 (2008),pp. 115-157
|
[14] |
Blake, W.J., Kaern, M., Cantor, C.R. et al. Noise in eukaryotic gene expression Nature, 422 (2003),pp. 633-637
|
[15] |
Brenner, S. Theoretical biology in the third millennium Phil. Trans. Roy. Soc. London B, 354 (1999),pp. 1963-1965
|
[16] |
Bryngelson, J.D., Onuchic, J.N., Socci, N.D. et al. Funnels, pathways, and the energy landscape of protein-folding—a synthesis Proteins: Structure, Function, and Bioinformatics, 21 (1995),pp. 167-195
|
[17] |
Cao, Y.F., Liang, J. Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability BMC Syst. Biol., 2 (2008),p. 30
|
[18] |
Chabot, J.R., Pedraza, J.M., Luitel, P. et al. Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock Nature, 450 (2007),pp. 1249-1252
|
[19] |
Delbruck, M. (1949). Discussion in Unités biologiquées de continuité génétique. (International Symposium CNRS 8, Paris), pp. 33–35.
|
[20] |
Dill, K.A., Bromberg, S., Yue, K.Z. et al. Principles of protein-folding: A perspective from simple exact models Protein Sci., 4 (1995),pp. 561-602
|
[21] |
Dill, K.A., Chan, H.S. From Levinthal to pathways to funnels Nat. Struct. Biol., 4 (1997),pp. 10-19
|
[22] |
Elf, J., Li, G.W., Xie, X.S. Probing transcription factor dynamics at the single-molecule level in a living cell Science, 316 (2007),pp. 1191-1194
|
[23] |
Ellegren, H., Sheldon, B.C. Genetic basis of fitness differences in natural population Nature, 452 (2008),pp. 169-175
|
[24] |
Endler, J.A.
|
[25] |
Feng, J., Kurtz, T.G.
|
[26] |
Fisher, R.A.
|
[27] |
Frauenfelder, H., Fenimore, P.W., Chen, G. et al. Protein folding is slaved to solvent motions Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 15469-15472
|
[28] |
Frauenfelder, H., Sligar, S.G., Wolynes, P.G. The energy landscapes and motions of proteins Science, 254 (1991),pp. 1598-1603
|
[29] |
Gadgil, C., Lee, C.H., Othmer, H.G. A stochastic analysis of first-order reaction networks Bull. Math. Biol., 67 (2005),pp. 901-946
|
[30] |
Gillespie, D.T. Stochastic simulation of chemical kinetics Ann. Rev. Phys. Chem., 58 (2007),pp. 35-55
|
[31] |
Haddad, W.M., Chellaboina, V.S.
|
[32] |
Haldane, J.B.S. A defense of beanbag genetics Intl. J. Epidemiol., 37 (2008),pp. 435-442
|
[33] |
Han, J.D.J. Understanding biological functions through molecular networks Cell Res., 18 (2008),pp. 224-237
|
[34] |
Hanson, S.M., Schnell, S. Reactant stationary approximation in enzyme kinetics J. Phys. Chem. A, 112 (2008),pp. 8654-8658
|
[35] |
Hemberg, M., Barahona, M. Perfect sampling of the Master equation for gene regulatory networks Biophys. J., 93 (2007),pp. 401-410
|
[36] |
Hendry, A.P., Grant, P.R., Grant, B.R. et al. Possible human impacts on adaptive radiation: Beak size bimodality in Darwin's finches Proc. Roy. Soc. B, 273 (2006),pp. 1887-1894
|
[37] |
Holmes, P. Ninety plus thirty years of nonlinear dynamics: Less is more and more is different Intl. J. Bifurc. Chaos, 15 (2005),pp. 2703-2716
|
[38] |
Holmstrom, K., Jensen, H.J. Who runs fastest in an adaptive landscape: Sexual versus asexual reproduction Physica A, 337 (2004),pp. 185-195
|
[39] |
Hood, L. Systems biology: Integrating technology, biology, and computation Mech. Aging Dev., 124 (2003),pp. 9-16
|
[40] |
Hopfield, J.J. Brain, neural networks, and computation Rev. Mod. Phys., 71 (1999),pp. S431-S437
|
[41] |
Jacob, F., Monod, J. On regulation of gene activity Cold Spring Harbor Sym. Quant. Biol., 26 (1961),pp. 193-211
|
[42] |
Kauffman, S.A.
|
[43] |
Kussell, E., Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments Science, 309 (2005),pp. 2075-2078
|
[44] |
Kwon, C., Ao, P., Thouless, D.J. Structure of stochastic dynamics near fixed points Proc. Natl. Acad. Sci. USA, 102 (2003),pp. 13029-13034
|
[45] |
Lapidus, S., Han, B., Wang, J. Intrinsic noise, dissipation cost, and robustness of cellular networks: The underlying energy landscape of MAPK signal transduction Proc. Nat. Acad. Sci. USA, 105 (2008),pp. 6039-6044
|
[46] |
Lee, L.W., Yin, L., Zhu, X.M. et al. Generic enzymatic rate equation under living conditions J. Biol. Syst., 15 (2007),pp. 495-514
|
[47] |
Li, C.C.
|
[48] |
Li, F.T., Long, T., Lu, Y. et al. The yeast cell-cycle network is robustly designed Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 4781-4786
|
[49] |
Liu, D. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems J. Comp. Phys., 227 (2008),pp. 8672-8684
|
[50] |
Lunzer, M., Milter, S.P., Felsheim, R. et al. The biochemical architecture of an ancient adaptive landscape Science, 310 (2005),pp. 499-501
|
[51] |
Malyshev, V.A., Pirogov, S.A. Reversibility and irreversibility in stochastic chemical kinetics Russ. Math. Surv., 63 (2008),pp. 1-34
|
[52] |
Mehta, P., Mukhopadhyay, R., Wingreen, N.S. Exponential sensitivity of noise-driven switching in genetic networks Phys. Biol. (2008)
|
[53] |
Milton, J.G., Cabrera, J.L., Ohira, T. Unstable dynamical systems: Delays, noise and control EPL, 83 (2008),p. 48001
|
[54] |
Morelli, M.J., Tanase-Nicola, S., Allen, R.J. et al. Reaction coordinates for the flipping of genetic switches Biophys. J., 94 (2008),pp. 3413-3423
|
[55] |
Novick, A., Weiner, M. Enzyme induction as an all-or-none phenomenon Proc. Natl. Acad. Sci. USA, 43 (1957),pp. 553-566
|
[56] |
Oliveri, P., Tu, Q., Davidson, E.H. Global regulatory logic for specification of an embryonic cell lineage Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 5955-5962
|
[57] |
Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M. et al. Empirical fitness landscapes reveal accessible evolutionary paths Nature, 445 (2007),pp. 383-386
|
[58] |
Ptashne, M.
|
[59] |
Qian, H. Cycle kinetics, steady-state thermodynamics and motors—a paradigm for living matter physics J. Phys. Cond. Mat., 17 (2005),pp. S3783-S3794
|
[60] |
Qian, H., Beard, D.A., Liang, S.D. Stoichiometric network theory for nonequilibrium biochemical systems Eur. J. Biochem., 270 (2003),pp. 415-421
|
[61] |
Raser, J.M., O'Shea, E.K. Noise in gene expression: Origins, consequences, and control Science, 309 (2005),pp. 2010-2013
|
[62] |
Scott, M., Hwa, T., Ingalls, B. Deterministic characterization of stochastic genetic circuits Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 7402-7407
|
[63] |
Service, R.F. Problem solved* (*Sort of) Science, 321 (2008),pp. 784-786
|
[64] |
Slack, J.M.W. Timeline—Conrad Hal Waddington: The last renaissance biologist? Nat. Rev. Genet., 3 (2002),pp. 889-895
|
[65] |
Thomas, S., Song, G., Amato, N.M. Protein folding by motion planning Phys. Biol., 2 (2005),pp. S148-S155
|
[66] |
Toulouse, T., Ao, P., Shmulevich, I. et al. Noise in a small genetic circuit that undergoes bifurcation Complexity, 11 (2005),pp. 45-51
|
[67] |
Varadhan, S.R.S. Large deviations Ann. Prob., 36 (2008),pp. 397-419
|
[68] |
Waddington, C.H.
|
[69] |
Wade, D.J. Energy landscapes and properties of biomolecules Phys. Biol., 2 (2005),pp. S86-S93
|
[70] |
Walczak, A.M., Onuchic, J.N., Wolynes, P.G. Absolute rate theories of epigenetic stability Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 18926-18931
|
[71] |
Wang, J., Huang, B., Xia, X.F. et al. Funneled landscape leads to robustness of cell networks: Yeast cell cycle PLoS Comp. Biol., 2 (2006),pp. 1385-1394
|
[72] |
Wang, J., Xu, L., Wang, E.K. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 12271-12276
|
[73] |
Waxman, D., Gavrilets, S. 20 questions on adaptive dynamics J. Evol. Biol., 18 (2005),pp. 1139-1154
|
[74] |
Wright, S.
|
[75] |
Wright, S. Surfaces of selective value revisited Am. Nat., 131 (1988),pp. 115-123
|
[76] |
Yin, L., Ao, P. Existence and construction of dynamical potential in nonequilibrium processes without detailed balance J. Phys., A39 (2006),pp. 8593-8601
|
[77] |
Yuan, Z.J., Zhang, J.J., Zhou, T.S. Noise-induced coherent switch Sci. China B, 51 (2008),pp. 562-569
|
[78] |
Zhang, Y.P., Qian, M.P., Ouyang, Q. et al. Stochastic model of yeast cell-cycle network Physica D, 219 (2006),pp. 35-39
|
[79] |
Zhou, Z., Ren, W.E.W. Adaptive minimum action method for the study of rare events J. Chem. Phys., 128 (2008),p. 104111
|
[80] |
Zhu, X.-M., Yin, L., Ao, P. Limit cycle and conserved dynamics Int. J. Mod. Phys. B, 20 (2006),pp. 817-827
|
[81] |
Zhu, X.-M., Yin, L., Hood, L. et al. Robustness, stability and efficiency of phage lambda genetic switch: Dynamical structure analysis J. Bioinf. Comput. Biol., 2 (2004),pp. 785-817
|
[82] |
Zhu, X.M., Yin, L., Hood, L. et al.
|