5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 10
Oct.  2008
Turn off MathJax
Article Contents

The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells

doi: 10.1016/S1673-8527(08)60079-X
More Information
  • Corresponding author: E-mail address: jhguo@nenu.edu.cn (Jianhua Guo); E-mail address: ycsuo@nenu.edu.cn (Jun Lu)
  • Received Date: 2008-06-13
  • Accepted Date: 2008-09-05
  • Rev Recd Date: 2008-09-04
  • Available Online: 2008-10-18
  • Publish Date: 2008-10-20
  • Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChIP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.
  • loading
  • [1]
    Baksh, D., Song, L., Tuan, R.S. Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy J. Cell. Mol. Med., 8 (2004),pp. 301-316
    [2]
    Bhattacharya, B., Miura, T., Brandenberger, R. et al. Gene expression in human embryonic stem cell lines: Unique molecular signature Blood, 103 (2004),pp. 2956-2964
    [3]
    Boquest, A.C., Shahdadfar, A., Fronsdal, K. et al. Mol. Biol. Cell, 16 (2005),pp. 1131-1141
    [4]
    Boyer, L.A., Lee, T.I., Cole, M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells Cell, 122 (2005),pp. 947-956
    [5]
    Caplan, A.I. Mesenchymal stem cells and gene therapy Clin. Orthop. Relat. Res. (2000),pp. S67-S70
    [6]
    Cawley, S., Bekiranov, S., Ng, H.H. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs Cell, 116 (2004),pp. 499-509
    [7]
    Chemnitz, J.M., Driesen, J., Classen, S. et al. Cancer Res., 66 (2006),pp. 1114-1122
    [8]
    D'Amour, K.A., Gage, F.H. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 11866-11872
    [9]
    Dai, B., Rasmussen, T.P. Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells Stem Cells, 25 (2007),pp. 2567-2574
    [10]
    Fry, C.J., Peterson, C.L. Chromatin remodeling enzymes: Who's on first? Curr. Biol., 11 (2001),pp. R185-R197
    [11]
    Gotea, V., Ovcharenko, I. DiRE: Identifying distant regulatory elements of co-expressed genes Nucleic Acids Res., 36 (2008),pp. W133-W139
    [12]
    Groszer, M., Erickson, R., Scripture-Adams, D.D. et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 111-116
    [13]
    Guo, Y., Guo, H., Zhang, L. et al. Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells J. Virol., 79 (2005),pp. 14392-14403
    [14]
    Hong, S.H., Gang, E.J., Jeong, J.A. et al. Biochem. Biophys. Res. Commun., 330 (2005),pp. 1153-1161
    [15]
    Huang, W., Tan, D., Wang, X. et al. Histone deacetylase 3 represses p15(INK4b) and p21(WAF1/cip1) transcription by interacting with Sp1 Biochem. Biophys. Res. Commun., 339 (2006),pp. 165-171
    [16]
    Jenuwein, T., Allis, C.D. Translating the histone code Science, 293 (2001),pp. 1074-1080
    [17]
    Khulan, B., Thompson, R.F., Ye, K. et al. Comparative isoschizomer profiling of cytosine methylation: The HELP assay Genome Res., 16 (2006),pp. 1046-1055
    [18]
    Kortesidis, A., Zannettino, A., Isenmann, S. et al. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells Blood, 105 (2005),pp. 3793-3801
    [19]
    Kratchmarova, I., Blagoev, B., Haack-Sorensen, M. et al. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation Science, 308 (2005),pp. 1472-1477
    [20]
    Kwon, Y.S., Garcia-Bassets, I., Hutt, K.R. et al. Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 4852-4857
    [21]
    Lachner, M., O'Sullivan, R.J., Jenuwein, T. An epigenetic road map for histone lysine methylation J. Cell. Sci., 116 (2003),pp. 2117-2124
    [22]
    Li, J., Sejas, D.P., Rani, R. et al. Nucleophosmin regulates cell cycle progression and stress response in hematopoietic stem/progenitor cells J. Biol. Chem., 281 (2006),pp. 16536-16545
    [23]
    Li, Y.J., Batra, N.N., You, L. et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation J. Orthop. Res., 22 (2004),pp. 1283-1289
    [24]
    Ma, Y., Xu, Y., Xiao, Z. et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells Stem Cells, 24 (2006),pp. 315-321
    [25]
    Miao, F., Natarajan, R. Mapping global histone methylation patterns in the coding regions of human genes Mol. Cell. Biol., 25 (2005),pp. 4650-4661
    [26]
    Morgan, H.D., Santos, F., Green, K. et al. Epigenetic reprogramming in mammals Hum. Mol. Genet., 14 (2005),pp. R47-R58
    [27]
    Olivier, E.N., Rybicki, A.C., Bouhassira, E.E. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells Stem Cells, 24 (2006),pp. 1914-1922
    [28]
    Reyes, M., Lund, T., Lenvik, T. et al. Blood, 98 (2001),pp. 2615-2625
    [29]
    Roth, S.Y., Denu, J.M., Allis, C.D. Histone acetyltransferases Annu. Rev. Biochem., 70 (2001),pp. 81-120
    [30]
    Santos, F., Hendrich, B., Reik, W. et al. Dynamic reprogramming of DNA methylation in the early mouse embryo Dev. Biol., 241 (2002),pp. 172-182
    [31]
    Song, L., Webb, N.E., Song, Y. et al. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency Stem Cells, 24 (2006),pp. 1707-1718
    [32]
    Tsai, M.S., Hwang, S.M., Chen, K.D. et al. Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow Stem Cells, 25 (2007),pp. 2511-2523
    [33]
    Xu, X., Bieda, M., Jin, V.X. et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members Genome Res., 17 (2007),pp. 1550-1561
    [34]
    Yeakley, J.M., Fan, J.B., Doucet, D. et al. Profiling alternative splicing on fiber-optic arrays Nat. Biotechnol., 20 (2002),pp. 353-358
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return