5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 10
Oct.  2008
Turn off MathJax
Article Contents

Developmental systems biology flourishing on new technologies

doi: 10.1016/S1673-8527(08)60078-8
More Information
  • Corresponding author: E-mail address: jdhan@genetics.ac.cn (Jing-Dong J. Han)
  • Received Date: 2008-08-13
  • Accepted Date: 2008-09-05
  • Rev Recd Date: 2008-09-04
  • Available Online: 2008-10-18
  • Publish Date: 2008-10-20
  • Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches.
  • These authors contributed equally to this report.
  • loading
  • [1]
    Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
    [2]
    Bianco, A., Poukkula, M., Cliffe, A. et al. Two distinct modes of guidance signalling during collective migration of border cells Nature, 448 (2007),pp. 362-365
    [3]
    Campillos, M., Kuhn, M., Gavin, A.C. et al. Drug target identification using side-effect similarity Science, 321 (2008),pp. 263-266
    [4]
    Chen, C.Y., Tsai, H.K., Hsu, C.M. et al. Discovering gapped binding sites of yeast transcription factors Proc Natl. Acad. Sci. USA, 105 (2008),pp. 2527-2532
    [5]
    Dierick, H.A., Greenspan, R.J. Molecular analysis of flies selected for aggressive behavior Nat. Genet., 38 (2006),pp. 1023-1031
    [6]
    Du, X., Wang, Z., Wu, A. et al. Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution Genome Res., 18 (2008),pp. 178-187
    [7]
    Grigoryan, G., Keating, A.E. Structure-based prediction of bZIP partnering specificity J. Mol. Biol., 355 (2006),pp. 1125-1142
    [8]
    Heintzman, N.D., Stuart, R.K., Hon, G. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome Nat. Genet., 39 (2007),pp. 311-318
    [9]
    Karres, J.S., Hilgers, V., Carrera, I. et al. Cell, 131 (2007),pp. 136-145
    [10]
    Kensche, P.R., van Noort, V., Dutilh, B.E. et al. Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution J. R. Soc. Interface, 5 (2008),pp. 151-170
    [11]
    Kim, T.H., Barrera, L.O., Zheng, M. et al. A high-resolution map of active promoters in the human genome Nature, 436 (2005),pp. 876-880
    [12]
    Kim, T.H., Abdullaev, Z.K., Smith, A.D. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome Cell, 128 (2007),pp. 1231-1245
    [13]
    Kuhn, M., Campillos, M., Gonzalez, P. et al. Large-scale prediction of drug-target relationships FEBS Lett., 582 (2008),pp. 1283-1290
    [14]
    Li, C.Y., Mao, X., Wei, L. Genes and (common) pathways underlying drug addiction PLoS Comput. Biol., 4 (2008),p. e2
    [15]
    Li, Q.R., Carvunis, A.R., Yu, H. et al. Genome Res., 18 (2008),pp. 1294-1303
    [16]
    Lu, J., Fu, Y., Kumar, S. et al. Mol. Biol. Evol., 25 (2008),pp. 929-938
    [17]
    Lu, J., Shen, Y., Wu, Q. et al. Nat. Genet., 40 (2008),pp. 351-355
    [18]
    Lu, X., Lu, X., Wang, Z.C. et al. Predicting features of breast cancer with gene expression patterns Breast Cancer Res. Treat., 108 (2008),pp. 191-201
    [19]
    Newman, J.R., Keating, A.E. Comprehensive identification of human bZIP interactions with coiled-coil arrays Science, 300 (2003),pp. 2097-2101
    [20]
    Odom, D.T., Dowell, R.D., Jacobsen, E.S. et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse Nat. Genet., 39 (2007),pp. 730-732
    [21]
    Okuda, S., Yamada, T., Hamajima, M. et al. KEGG Atlas mapping for global analysis of metabolic pathways Nucleic Acids Res., 36 (2008),pp. W423-W426
    [22]
    Pujana, M.A., Han, J.D., Starita, L.M. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction Nat. Genet., 39 (2007),pp. 1338-1349
    [23]
    Roh, T.Y., Wei, G., Farrell, C.M. et al. Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns Genome Res., 17 (2007),pp. 74-81
    [24]
    Rorth, P. Collective guidance of collective cell migration Trends Cell Biol., 17 (2007),pp. 575-579
    [25]
    Schones, D.E., Cui, K., Cuddapah, S. et al. Dynamic regulation of nucleosome positioning in the human genome Cell, 132 (2008),pp. 887-898
    [26]
    Suzanne Komili, N.G.F., Frederick, P. Roth, Silver, Pamela A. Functional specificity among ribosomal proteins regulates gene expression Cell, 131 (2007),pp. 557-571
    [27]
    Tsai, H.K., Huang, G.T., Chou, M.Y. et al. Method for identifying transcription factor binding sites in yeast Bioinformatics, 22 (2006),pp. 1675-1681
    [28]
    van Swinderen, B., Greenspan, R.J. Genetics, 169 (2005),pp. 2151-2163
    [29]
    Wang, Z., Zang, C., Rosenfeld, J.A. et al. Combinatorial patterns of histone acetylations and methylations in the human genome Nat. Genet., 40 (2008),pp. 897-903
    [30]
    Weber, K.E., Greenspan, R.J., Chicoine, D.R. et al. Genetics, 178 (2008),pp. 1093-1108
    [31]
    Wu, J., Mao, X., Cai, T. et al. KOBAS server: a web-based platform for automated annotation and pathway identification Nucleic Acids Res., 34 (2006),pp. W720-W724
    [32]
    Wu, X., Jiang, R., Zhang, M.Q. et al. Network-based global inference of human disease genes Mol. Syst. Biol., 4 (2008),p. 189
    [33]
    Xie, D., Cai, J., Chia, N.-Y. et al. Cross-species de novo identification of cis-regulatory modules with GibbsModule: Application to gene regulation in embryonic stem cells Genome Res., 18 (2008),pp. 1325-1335
    [34]
    Xue, H., Xian, B., Dong, D. et al. A modular network model of aging Mol. Syst. Biol., 3 (2007),p. 147
    [35]
    Yang, K., Ma, W., Liang, H. et al. Dynamic simulations on the arachidonic acid metabolic network PLoS Comput. Biol., 3 (2007),p. e55
    [36]
    Yildirim, M.A., Goh, K.I., Cusick, M.E. et al. Drug-target network Nat. Biotechnol., 25 (2007),pp. 1119-1126
    [37]
    Yu, H., Zhu, S., Zhou, B. et al. Inferring causal relationships among different histone modifications and gene expression Genome Res., 18 (2008),pp. 1314-1324
    [38]
    Zhang, X., Lu, X., Shi, Q. et al. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data BMC Bioinformatics, 7 (2006),p. 197
    [39]
    Zheng, Q., Wang, X.J. GOEAST: A web-based software toolkit for Gene Ontology enrichment analysis Nucleic Acids Res., 36 (2008),pp. W358-W363
    [40]
    Zhou, Y., Wang, R., Li, L. et al. Inferring functional linkages between proteins from evolutionary scenarios J. Mol. Biol., 359 (2006),pp. 1150-1159
    [41]
    Zou, L., Sriswasdi, S., Ross, B. et al. PLoS Comput. Biol., 4 (2008),p. e1000003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return