5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 9
Sep.  2008
Turn off MathJax
Article Contents

Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones

doi: 10.1016/S1673-8527(08)60076-4
More Information
  • Corresponding author: E-mail address: sunqy@ioz.ac.cn (Qing-Yuan Sun)
  • Received Date: 2008-04-15
  • Accepted Date: 2008-07-12
  • Rev Recd Date: 2008-07-10
  • Available Online: 2008-09-17
  • Publish Date: 2008-09-20
  • High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation. DNA methylation is established and maintained by DNA methyltransferases (DNMTs), therefore, it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs. Since DNA methylation can strongly inhibit gene expression, aberrant DNA methylation of DNMT genes may disturb gene expression. But presently, it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos. In our study, we analyzed methylation patterns of the 5′ regions of four DNMT genes includingDnmt3a, Dnmt3b, Dnmt1 and Dnmt2 in four aborted bovine clones. Using bisulfite sequencing method, we found that 3 out of 4 aborted bovine clones (AF1, AF2 and AF3) showed either hypermethylation or hypomethylation in the 5′ regions of Dnmt3a and Dnmt3b, indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed. However, the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF) fetuses. Besides, we found that the 5′ regions of Dnmt1 and Dnmt2 were nearly completely unmethylated in all normal adults, IVF fetuses, sperm and aborted clones. Together, our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5′ regions is probably associated with the high abortion of bovine clones.
  • loading
  • [1]
    Aapola, U., Maenpaa, K., Kaipia, A. et al. Biochem. J., 380 (2004),pp. 705-713
    [2]
    Baylin, S.B., Herman, J.G., Graff, J.R. et al. Alterations in DNA methylation: A fundamental aspect of neoplasia Adv. Cancer Res., 72 (1998),pp. 141-196
    [3]
    Bird, A.P. CpG-rich islands and the function of DNA methylation Nature, 321 (1986),pp. 209-213
    [4]
    Bird, A.P., Wolffe, A.P. Methylation-induced repression—belts, braces, and chromatin Cell, 99 (1999),pp. 451-454
    [5]
    Bleich, S., Lenz, B., Ziegenbein, M. et al. Alcohol. Clin. Exp. Res., 30 (2006),pp. 587-591
    [6]
    Bourc'his, D., Le Bourhis, D., Patin, D. et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos Curr. Biol., 11 (2001),pp. 1542-1546
    [7]
    Campbell, K.H., McWhir, J., Ritchie, W.A. et al. Sheep cloned by nuclear transfer from a cultured cell line Nature, 380 (1996),pp. 64-66
    [8]
    , Lopatina, N., Andrews, L.G., Tollefsbol, T.O. Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts Mol. Cell. Biochem., 252 (2003),pp. 33-43
    [9]
    Chen, T., Li, E. Structure and function of eukaryotic DNA methyltransferases Curr. Top. Dev. Biol., 60 (2004),pp. 55-89
    [10]
    Chen, T., Zhang, Y.L., Jiang, Y. et al. The DNA methylation events in normal and cloned rabbit embryos FEBS Lett., 578 (2004),pp. 69-72
    [11]
    Chen, T., Jiang, Y., Zhang, Y.L. et al. DNA hypomethylation of individual sequences in aborted cloned bovine fetuses Front. Biosci., 10 (2005),pp. 3002-3008
    [12]
    Cibelli, J.B., Stice, S.L., Golueke, P.J. et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts Science, 280 (1998),pp. 1256-1258
    [13]
    Dean, W., Santos, F., Stojkovic, M. et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 13734-13738
    [14]
    Delgado, S., Gomez, M., Bird, A. et al. Initiation of DNA replication at CpG islands in mammalian chromosomes Embo. J., 17 (1998),pp. 2426-2435
    [15]
    Dindot, S.V., Farin, P.W., Farin, C.E. et al. Biol. Reprod., 71 (2004),pp. 470-478
    [16]
    Fuks, F., Hurd, P.J., Wolf, D. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation J. Biol. Chem., 278 (2003),pp. 4035-4040
    [17]
    Golding, M.C., Westhusin, M.E. Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues Gene Expr. Patterns, 3 (2003),pp. 551-558
    [18]
    Hill, J.R., Burghardt, R.C., Jones, K. et al. Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses Biol. Reprod., 63 (2000),pp. 1787-1794
    [19]
    Januchowski, R., Dabrowski, M., Ofori, H. et al. Trichostatin A down-regulate DNA methyltransferase 1 in Jurkat T cells Cancer Lett., 246 (2007),pp. 313-317
    [20]
    Jones, P.L., Veenstra, G.J., Wade, P.A. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription Nat. Genet., 19 (1998),pp. 187-191
    [21]
    Kang, Y.K., Koo, D.B., Park, J.S. et al. Aberrant methylation of donor genome in cloned bovine embryos Nat. Genet., 28 (2001),pp. 173-177
    [22]
    Kishikawa, S., Ugai, H., Murata, T. et al. Nucleic Acids Res. Suppl. (2002),pp. 209-210
    [23]
    Ko, Y.G., Nishino, K., Hattori, N. et al. J. Biol. Chem., 280 (2005),pp. 9627-9634
    [24]
    Kremenskoy, M., Kremenska, Y., Suzuki, M. et al. J. Reprod. Dev., 52 (2006),pp. 277-285
    [25]
    Liu, J.H., Yin, S., Xiong, B. et al. Aberrant DNA methylation imprints in aborted bovine clones Mol. Reprod. Dev., 75 (2008),pp. 598-607
    [26]
    McCarrey, J.R., Geyer, C.B., Yoshioka, H. Epigenetic regulation of testis-specific gene expression Ann. N. Y. Acad. Sci., 1061 (2005),pp. 226-242
    [27]
    Rivenbark, A.G., Jones, W.D., Risher, J.D. et al. DNA methylation-dependent epigenetic regulation of gene expression in MCF-7 breast cancer cells Epigenetics, 1 (2006),pp. 32-44
    [28]
    Szyf, M., Pakneshan, P., Rabbani, S.A. DNA demethylation and cancer: Therapeutic implications Cancer Lett, 211 (2004),pp. 133-143
    [29]
    Tjian, R., Maniatis, T. Transcriptional activation: A complex puzzle with few easy pieces Cell, 77 (1994),pp. 5-8
    [30]
    Wilmut, I., Schnieke, A.E., McWhir, J. et al. Viable offspring derived from fetal and adult mammalian cells Nature, 385 (1997),pp. 810-813
    [31]
    Wrenzycki, C., Wells, D., Herrmann, D. et al. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts Biol. Reprod., 65 (2001),pp. 309-317
    [32]
    Wu, Y., Strawn, E., Basir, Z. et al. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis Epigenetics, 1 (2006),pp. 106-111
    [33]
    Xue, F., Tian, X.C., Du, F. et al. Aberrant patterns of X chromosome inactivation in bovine clones Nat. Genet., 31 (2002),pp. 216-220
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return