5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 8
Aug.  2008
Turn off MathJax
Article Contents

Characterization of Ser73 in Arabidopsis thaliana Glutathione S-transferase zeta class

doi: 10.1016/S1673-8527(08)60069-7
More Information
  • Corresponding author: E-mail address: chendefu@nankai.edu.cn (Defu Chen)
  • Received Date: 2008-03-27
  • Accepted Date: 2008-05-14
  • Rev Recd Date: 2008-05-12
  • Available Online: 2008-08-20
  • Publish Date: 2008-08-20
  • Glutathione S-transferases (GSTs) are ubiquitous detoxifying superfamily enzymes. The zeta class GST from Arabidopsis thaliana (AtGSTZ) can efficiently degrade dichloroacetic acid (DCA), which is a common carcinogenic contaminant in drinking water. Ser73 in AtGSTZ is a conserved residue at Glutathione binding site (G-site). Compared with the equivalent residues in other GSTs, the catalytic and structural properties of Ser73 were poorly investigated. In this article, site-saturation mutagenesis was performed to characterize the detailed role of Ser73. The DCA dechlorinating (DCA-DC) activity showed that most of the mutants had less than 3% of the wild-type activity, except S73T and S73A showing 43.48% and 21.62% of the wild-type activity, respectively, indicating that position 73 inAtGSTZ showed low mutational substitutability. Kinetic experiments revealed that mutants S73T, S73A, and S73G showed low binding affinity and catalytic efficiency toward DCA, 1.8-, 3.1-, and 10.7-fold increases in KmDCA values and 4.0-, 9.6-, and 34.1-fold decreases in Kcat-DCA/KmDCA values, respectively, compared to the wild type. Thermostability and refolding experiments showed that the wild type maintained more thermostability and recovered activity. These results demonstrated the important role of Ser73 in catalytic activity and structural stability of the enzyme. Such properties of Ser73 could be particularly crucial to the molecular evolution of AtGSTZ and might, therefore, help explain why Ser73 is conserved in all GSTs. This conclusion might provide insights into the directed evolution of the DCA-DC activity of AtGSTZ.
  • loading
  • [1]
    Abagyan, R., Totrov, M., Kuznetsov, D. ICM—a new method for protein modeling and design. Applications to docking and structure prediction from the distorted native conformation J. Comp. Chem., 15 (1994),pp. 488-506
    [2]
    Abagyan, R., Totrov, M.M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins J. Mol. Biol., 235 (1994),pp. 983-1002
    [3]
    Armstrong, R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases Chem. Res. Toxicol., 10 (1997),pp. 2-18
    [4]
    Bloom, J.D., Labthavikul, S.T., Otey, C.R. Protein stability promotes evolvability Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 5869-5874
    [5]
    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976),pp. 248-254
    [6]
    Caccuri, A.M., Ascenzi, P., Antonini, G. Structural flexibility modulates the activity of human glutathione transferase P1-1. INFLUENCE OF A POOR CO-SUBSTRATE ON DYNAMICS AND KINETICS OF HUMAN GLUTATHIONE TRANSFERASE J. Biol. Chem., 271 (1996),pp. 16193-16198
    [7]
    Caccuri, A.M., Antonini, G., Nicotra, M. et al. J. Biol. Chem., 272 (1997),pp. 29681-29686
    [8]
    Caccuri, A.M., Lo Bello, M., Nuccetelli, M. et al. Proton release upon glutathione binding to glutathione transferase P1-1: Kinetic analysis of a multistep glutathione binding process Biochemistry, 37 (1998),pp. 3028-3034
    [9]
    Cardoso, R.M., Daniels, D.S., Bruns, C.M. et al. Proteins, 51 (2003),pp. 137-146
    [10]
    Chen, D., Kawarasaki, Y., Nakano, H. et al. J. Biosci. Bioeng., 95 (2003),pp. 594-600
    [11]
    Coggan, M., Liu, D., Chelvanayagam, G., Anderson, W.G., Anders, M.W., Board, P.G. (2000). Evaluation of possible active site residues in GSTZ 1-1. In Proceedings of GST 2000 International Conference on Glutathione Transferases. Uppsala, Sweden. pp. 26.
    [12]
    Dixon, D.P., Cole, D.J., Edwards, R. Arch. Biochem. Biophys., 384 (2000),pp. 407-412
    [13]
    Dixon, D.P., Lapthorn, A., Edwards, R. Plant glutathione transferases Genome Biol, 3 (2002),pp. 3004.1-3004.10
    [14]
    Edwards, R. Physiol. Plant., 98 (1996),pp. 594-604
    [15]
    Fritz-Wolf, K., Becker, A., Rahlfs, S. et al. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 13821-13826
    [16]
    Georgescu, R., Bandara, G., Sun, L.
    [17]
    Grahn, E., Novotny, M., Jakobsson, E. New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix Acta Crystallogr. D. Biol. Crystallogr., 62 (2006),pp. 197-207
    [18]
    Guo, H.H., Choe, J., Loeb, L.A. Protein tolerance to random amino acid change Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9205-9210
    [19]
    Labrou, N.E., Rigden, D.J., Clonis, Y.D. Biomol. Eng., 21 (2004),pp. 61-66
    [20]
    Markiewicz, P., Kleina, L.G., Cruz, C. et al. J. Mol. Biol., 240 (1994),pp. 421-433
    [21]
    Ng, PC., Henikoff, S. Predicting deleterious amino acid substitutions Genome Res., 11 (2001),pp. 863-874
    [22]
    Park, S., Morley, K.L., Horsman, G.P. et al. Chem. Biol., 12 (2005),pp. 45-54
    [23]
    Polekhina, G., Board, P.G., Blackburn, A.C. et al. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity Biochemistry, 40 (2001),pp. 1567-1576
    [24]
    Rennell, D., Bouvier, S.E., Hardy, L.W. et al. Systematic mutation of bacteriophage T4 lysozyme J. Mol. Biol., 222 (1991),pp. 67-88
    [25]
    Ricci, G., Turella, P., de Maria, F. et al. Binding and kinetic mechanisms of the zeta class glutathione transferase J. Biol. Chem., 279 (2004),pp. 33336-33342
    [26]
    Saunders, C.T., Baker, D. Evaluation of structural and evolutionary contributions to deleterious mutation prediction J. Mol. Biol., 322 (2002),pp. 891-901
    [27]
    Seltzer, S. Purification and properties of maleylacetone cis-trans isomerase from vibrio 01 J. Biol. Chem., 248 (1973),pp. 215-222
    [28]
    Tao, S., Chen, X., Liu, J. et al. Prog. Biochem. Biophys., 35 (2008),pp. 208-216
    [29]
    Sun, Y.J., Kuan, I.C., Tam, M.F. et al. J. Mol. Biol., 278 (1998),pp. 239-252
    [30]
    Thom, R., Dixon, D.P., Edwards, R. et al. J. Mol. Biol., 308 (2001),pp. 949-962
    [31]
    Tong, Z., Board, P.G., Anders, M.W. Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other alpha-haloacids Chem. Res. Toxicol., 11 (1998),pp. 1332-1338
    [32]
    Tong, Z., Board, P.G., Anders, M.W. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid Biochem. J., 331 (1998),pp. 371-374
    [33]
    Vargo, M.A., Nguyen, L., Colman, R.F. Biochemistry, 43 (2004),pp. 3327-3335
    [34]
    Winayanuwattikun, P., Ketterman, A.J. An electron-sharing network involved in the catalytic mechanism is functionally conserved in different glutathione transferase classes J. Biol. Chem., 280 (2005),pp. 31776-31782
    [35]
    Zeng, Q.Y., Wang, X.R. FEBS Lett., 579 (2005),pp. 2657-2662
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return