| [1] | 
					 Abagyan, R., Totrov, M., Kuznetsov, D. ICM—a new method for protein modeling and design. Applications to docking and structure prediction from the distorted native conformation J. Comp. Chem., 15 (1994),pp. 488-506 
						
					 | 
			
| [2] | 
					 Abagyan, R., Totrov, M.M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins J. Mol. Biol., 235 (1994),pp. 983-1002 
						
					 | 
			
| [3] | 
					 Armstrong, R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases Chem. Res. Toxicol., 10 (1997),pp. 2-18 
						
					 | 
			
| [4] | 
					 Bloom, J.D., Labthavikul, S.T., Otey, C.R. Protein stability promotes evolvability Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 5869-5874 
						
					 | 
			
| [5] | 
					 Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976),pp. 248-254 
						
					 | 
			
| [6] | 
					 Caccuri, A.M., Ascenzi, P., Antonini, G. Structural flexibility modulates the activity of human glutathione transferase P1-1. INFLUENCE OF A POOR CO-SUBSTRATE ON DYNAMICS AND KINETICS OF HUMAN GLUTATHIONE TRANSFERASE J. Biol. Chem., 271 (1996),pp. 16193-16198 
						
					 | 
			
| [7] | 
					 Caccuri, A.M., Antonini, G., Nicotra, M. et al. J. Biol. Chem., 272 (1997),pp. 29681-29686 
						
					 | 
			
| [8] | 
					 Caccuri, A.M., Lo Bello, M., Nuccetelli, M. et al. Proton release upon glutathione binding to glutathione transferase P1-1: Kinetic analysis of a multistep glutathione binding process Biochemistry, 37 (1998),pp. 3028-3034 
						
					 | 
			
| [9] | 
					 Cardoso, R.M., Daniels, D.S., Bruns, C.M. et al. Proteins, 51 (2003),pp. 137-146 
						
					 | 
			
| [10] | 
					 Chen, D., Kawarasaki, Y., Nakano, H. et al. J. Biosci. Bioeng., 95 (2003),pp. 594-600 
						
					 | 
			
| [11] | 
					 Coggan, M., Liu, D., Chelvanayagam, G., Anderson, W.G., Anders, M.W., Board, P.G. (2000). Evaluation of possible active site residues in GSTZ 1-1. In Proceedings of GST 2000 International Conference on Glutathione Transferases. Uppsala, Sweden. pp. 26. 
						
					 | 
			
| [12] | 
					 Dixon, D.P., Cole, D.J., Edwards, R. Arch. Biochem. Biophys., 384 (2000),pp. 407-412 
						
					 | 
			
| [13] | 
					 Dixon, D.P., Lapthorn, A., Edwards, R. Plant glutathione transferases Genome Biol, 3 (2002),pp. 3004.1-3004.10 
						
					 | 
			
| [14] | 
					 Edwards, R. Physiol. Plant., 98 (1996),pp. 594-604 
						
					 | 
			
| [15] | 
					 Fritz-Wolf, K., Becker, A., Rahlfs, S. et al. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 13821-13826 
						
					 | 
			
| [16] | 
					 Georgescu, R., Bandara, G., Sun, L. 
						
					 | 
			
| [17] | 
					 Grahn, E., Novotny, M., Jakobsson, E. New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix Acta Crystallogr. D. Biol. Crystallogr., 62 (2006),pp. 197-207 
						
					 | 
			
| [18] | 
					 Guo, H.H., Choe, J., Loeb, L.A. Protein tolerance to random amino acid change Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9205-9210 
						
					 | 
			
| [19] | 
					 Labrou, N.E., Rigden, D.J., Clonis, Y.D. Biomol. Eng., 21 (2004),pp. 61-66 
						
					 | 
			
| [20] | 
					 Markiewicz, P., Kleina, L.G., Cruz, C. et al. J. Mol. Biol., 240 (1994),pp. 421-433 
						
					 | 
			
| [21] | 
					 Ng, PC., Henikoff, S. Predicting deleterious amino acid substitutions Genome Res., 11 (2001),pp. 863-874 
						
					 | 
			
| [22] | 
					 Park, S., Morley, K.L., Horsman, G.P. et al. Chem. Biol., 12 (2005),pp. 45-54 
						
					 | 
			
| [23] | 
					 Polekhina, G., Board, P.G., Blackburn, A.C. et al. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity Biochemistry, 40 (2001),pp. 1567-1576 
						
					 | 
			
| [24] | 
					 Rennell, D., Bouvier, S.E., Hardy, L.W. et al. Systematic mutation of bacteriophage T4 lysozyme J. Mol. Biol., 222 (1991),pp. 67-88 
						
					 | 
			
| [25] | 
					 Ricci, G., Turella, P., de Maria, F. et al. Binding and kinetic mechanisms of the zeta class glutathione transferase J. Biol. Chem., 279 (2004),pp. 33336-33342 
						
					 | 
			
| [26] | 
					 Saunders, C.T., Baker, D. Evaluation of structural and evolutionary contributions to deleterious mutation prediction J. Mol. Biol., 322 (2002),pp. 891-901 
						
					 | 
			
| [27] | 
					 Seltzer, S. Purification and properties of maleylacetone cis-trans isomerase from vibrio 01 J. Biol. Chem., 248 (1973),pp. 215-222 
						
					 | 
			
| [28] | 
					 Tao, S., Chen, X., Liu, J. et al. Prog. Biochem. Biophys., 35 (2008),pp. 208-216 
						
					 | 
			
| [29] | 
					 Sun, Y.J., Kuan, I.C., Tam, M.F. et al. J. Mol. Biol., 278 (1998),pp. 239-252 
						
					 | 
			
| [30] | 
					 Thom, R., Dixon, D.P., Edwards, R. et al. J. Mol. Biol., 308 (2001),pp. 949-962 
						
					 | 
			
| [31] | 
					 Tong, Z., Board, P.G., Anders, M.W. Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other alpha-haloacids Chem. Res. Toxicol., 11 (1998),pp. 1332-1338 
						
					 | 
			
| [32] | 
					 Tong, Z., Board, P.G., Anders, M.W. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid Biochem. J., 331 (1998),pp. 371-374 
						
					 | 
			
| [33] | 
					 Vargo, M.A., Nguyen, L., Colman, R.F. Biochemistry, 43 (2004),pp. 3327-3335 
						
					 | 
			
| [34] | 
					 Winayanuwattikun, P., Ketterman, A.J. An electron-sharing network involved in the catalytic mechanism is functionally conserved in different glutathione transferase classes J. Biol. Chem., 280 (2005),pp. 31776-31782 
						
					 | 
			
| [35] | 
					 Zeng, Q.Y., Wang, X.R. FEBS Lett., 579 (2005),pp. 2657-2662 
						
					 |