5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 8
Aug.  2008
Turn off MathJax
Article Contents

Comparative analysis of mitochondrial fragments transferred to the nucleus in vertebrate

doi: 10.1016/S1673-8527(08)60066-1
More Information
  • Corresponding author: E-mail address: liqw@263.net (Qingwei Li)
  • Received Date: 2008-03-11
  • Accepted Date: 2008-06-26
  • Rev Recd Date: 2008-06-25
  • Available Online: 2008-08-20
  • Publish Date: 2008-08-20
  • Mitochondrial DNA sequences transferred to the nucleus give rise to the socalled nuclear mitochondrial DNA (numt). In the GenBank database, 244 numts have been found in six orders of birds (Anseriformes, Columbiformes, Falconiformes, Charadriiformes, Galliformes and Passeriformes). Sequences alignment (NCBI-BLASTN) was carried out with mitochondrial and corresponding nuclear genome sequences in nine vertebrate species. The sequences with high homology were considered as numts. The number of numts ranged from 15 in chicken to 159 in chimpanzee. The sequences of numts in macaque, chimpanzee, and human spanned 100% of the entire mammalian mitochondrial genome. The reconstructed frequency of the mitochondrial gene transferred to the nucleus demonstrated that the rRNA genes had high frequencies than other mitochondrial genes. Using the RepeatMasker program, the transposable elements were detected in the flanking regions of each numt. The results showed that less than 5% of the flanking sequences were made up of repetitive elements in chicken. The GC content of 5′- and 3′-flanking regions of numts in nine species was less than 44%. The analysis of the flanking sequences provided a valuable understanding for future study on mechanism of mitochondrial gene transfer to the nucleus and the site of numt integration.
  • loading
  • [1]
    Adams, K.L., Qiu, Y.L., Stoutemyer, M. et al. Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 9905-9912
    [2]
    Antunes, A., Pontius, J., Ramos, M.J. et al. Mitochondrial introgressions into the nuclear genome of the domestic cat J. Hered., 98 (2007),pp. 414-420
    [3]
    Arabidopsis Genome Initiative Nature, 408 (2000),pp. 796-815
    [4]
    Ayliffe, M.A., Scott, N.S., Timmis, J.N. Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants Mol. Biol. Evol., 15 (1998),pp. 738-745
    [5]
    Bedell, J.A., Korf, I., Gish, W. MaskerAid: A performance enhancement to RepeatMasker Bioinformatics, 16 (2000),pp. 1040-1041
    [6]
    Bensasson, D., Zhang, D.X. Mitochondrial pseudogenes: Evolution's misplaced witnesses Trends Ecol. Evol., 16 (2001),pp. 314-322
    [7]
    Bensasson, D., Feldman, M.W., Petrov, D.A. Rates of DNA duplication and mitochondrial DNA insertion in the human genome J. Mol. Evol., 57 (2003),pp. 343-354
    [8]
    Clark, M.S., Edwards, Y.J.K., McQueen, H.A. et al. Sequence scanning chicken cosmids: A methodology for genome screening Gene, 227 (1999),pp. 223-230
    [9]
    Davis, R.E., Paker, W.D. Biochem. Biophys. Res. Commun., 244 (1998),pp. 877-883
    [10]
    DeWoody, J.A., Chesser, R.K., Baker, R.J. Mol. Evol., 48 (1999),pp. 380-382
    [11]
    Du Buy, H.G., Riley, F.L. Proc. Natl. Acad. Sci. USA, 57 (1967),pp. 790-797
    [12]
    Gellissen, G., Michaelis, G. Gene transfer: Mitochondria to nucleus Ann. New York Acad. Sci., 503 (1987),pp. 391-401
    [13]
    Hazkani-Covo, E., Sorek, R., Graur, D. J. Mol. Evol., 56 (2003),pp. 169-174
    [14]
    Hirotsune, S., Yoshida, N., Chen, A. et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene Nature, 423 (2003),pp. 91-96
    [15]
    Leister, D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA Trends Genet., 21 (2005),pp. 655-663
    [16]
    Lopez, J.V., Yuhki, N., Masuda, R. et al. J. Mol. Evol., 39 (1994),pp. 174-190
    [17]
    Lopez, J.V., Culver, M., Stephens, J.C. et al. Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals Mol. Biol. Evol., 14 (1997),pp. 277-286
    [18]
    McQueen, H.A., Siriaco, G., Bird, A.P. Chicken microchromosomes are hyperacetylated, early replicating, and gene rich Genome Res., 8 (1998),pp. 621-630
    [19]
    Mishmar, D., Ruiz-Pesini, E., Brandon, M. et al. Human Mutat., 23 (2004),pp. 125-133
    [20]
    Mourier, T., Hansen, A.J., Willerslev, E. et al. The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus Mol. Biol. Evol., 18 (2001),pp. 1833-1837
    [21]
    Palmer, J.D., Adams, K.L., Cho, Y. et al. Dynamics evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates Proc. Natl. Acad. Sci. USA, 94 (2000),pp. 6960-6966
    [22]
    Pereira, S.L., Baker, A.J. BMC Evol. Biol., 25 (2004),pp. 4-17
    [23]
    Perna, N.T., Kocher, T.D. Mitochondrial DNA: Molecular fossils in the nucleus Curr. Biol., 6 (1996),pp. 128-129
    [24]
    Pons, J., Vogler, A.P. Complex pattern of coalescence and fast evolution of a mitochondrial rRNA pseudogene in a recent radiation of tiger beetles Mol. Biol. Evol., 22 (2005),pp. 991-1000
    [25]
    Primmer, C.R., Raudsepp, T., Chowdhary, B.P. et al. Low frequency of microsatellites in the avian genome Genome Res., 7 (1997),pp. 471-482
    [26]
    Ricchetti, M., Fairhead, C., Dujon, B. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes Nature, 402 (1999),pp. 96-100
    [27]
    Ricchetti, M., Tekaia, F., Dujon, B. Continued colonization of the human genome by mitochondrial DNA PLoS Biol., 2 (2004),pp. 1313-1324
    [28]
    Richly, E., Leister, D. Mol. Biol. Evol., 21 (2004),pp. 1081-1084
    [29]
    Richly, E., Leister, D. Mol. Biol. Evol., 21 (2004),pp. 1972-1980
    [30]
    Smith, J., Bruley, C.K., Paton, I.R. et al. Differences in gene density on chicken macrochromosomes and microchromosomes Anim. Genet., 31 (2000),pp. 96-103
    [31]
    Tourmen, Y., Baris, O. Structure and chromosomal distribution of human mitochondrial pseudogenes Genomics, 80 (2002),pp. 71-77
    [32]
    Triant, D.A., DeWoody, J.A. Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents Genetica, 132 (2008),pp. 21-33
    [33]
    Woischnik, M., Moraes, C.T. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome Genome Res., 12 (2002),pp. 885-893
    [34]
    Zischler, H., Geisert, H., Castresana, J. A hominoid-specific nuclear insertion of the mitochondrial D-loop: Implications for reconstrctiong ancestral mitochondrial sequences Mol. Biol. Evol., 15 (1998),pp. 463-469
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (78) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return