5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 7
Jul.  2008
Turn off MathJax
Article Contents

Ectopic expression of soybean GmKNT1 in Arabidopsis results in altered leaf morphology and flower identity

doi: 10.1016/S1673-8527(08)60061-2
More Information
  • Corresponding author: E-mail address: jszhang@genetics.ac.cn (Jinsong Zhang); E-mail address: sychen@genetics.ac.cn (Shouyi Chen)
  • Received Date: 2007-10-26
  • Accepted Date: 2008-05-12
  • Rev Recd Date: 2008-05-11
  • Available Online: 2008-07-18
  • Publish Date: 2008-07-20
  • Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron microscopy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpressing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher expression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.
  • loading
  • [1]
    Barley, R., Waites, R. Plant meristems: The interplay of knox and gibberellins Curr. Biol., 12 (2002),pp. 696-698
    [2]
    Bechtold, N., Pelletier, G. Methods Mol. Biol., 82 (1998),pp. 259-266
    [3]
    Belles-Boix, E., Hamant, O., Witiak, S.M. et al. Plant Cell, 18 (2006),pp. 1900-1907
    [4]
    Byrne, M.E., Simorowski, J., Martienssen, R.A. Development, 129 (2002),pp. 1957-1965
    [5]
    Chuck, G., Lincoln, C., Hake, S. Plant Cell, 8 (1996),pp. 1277-1289
    [6]
    Dean, G., Casson, S., Lindsey, K. Plant Mol. Biol., 54 (2004),pp. 71-84
    [7]
    Goliber, T., Kessler, S., Chen, J.J. et al. Genetic, molecular, and morphological analysis of compound leaf development Curr. Top. Dev. Biol., 43 (1999),pp. 259-290
    [8]
    Hay, A., Kaur, H., Phillips, A. et al. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans Curr. Biol., 12 (2002),pp. 1557-1565
    [9]
    He, X.J., Mu, R.L., Cao, W.H. et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development Plant J., 44 (2005),pp. 903-916
    [10]
    Hibara, K., Takada, S., Tasaka, M. Plant J., 36 (2003),pp. 687-696
    [11]
    Hofer, J., Gourlay, C., Michael, A. et al. Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia Plant Mol. Biol., 45 (2001),pp. 387-398
    [12]
    Jack, T. Molecular and genetic mechanism of floral control Plant Cell, 16 (2004),pp. S1-S17
    [13]
    Jasinski, S., Piazza, P., Craft, J. et al. Curr. Biol., 15 (2005),pp. 1560-1565
    [14]
    Kano-Murakami, Y., Yanai, T., Tagiri, A. et al. Plant Cell, 334 (1993),pp. 365-368
    [15]
    Kerstetter, R.A., Laudencia-Chingcuanco, D., Smith, L.G. et al. Development, 124 (1997),pp. 3045-3054
    [16]
    Koltai, H., Dhandaydham, M., Opperman, C. et al. Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont Mol. Plant-Microbe Interact., 14 (2001),pp. 1168-1177
    [17]
    Kusaba, S., Fukumoto, M., Honda, C. et al. Plant Physiol., 117 (1998),pp. 1179-1184
    [18]
    Lin, W.C., Shuai, B., Springer, P.S. Plant Cell, 15 (2003),pp. 2241-2252
    [19]
    Lincoln, C., Long, J., Yamaguchi, J. et al. Plant Cell, 6 (1994),pp. 1859-1876
    [20]
    Long, J.A., Moan, E.I., Medford, J.I. et al. Nature, 379 (1996),pp. 66-69
    [21]
    Ma, H., McMullen, M.D., Finer, J.J. Plant Mol. Biol., 24 (1994),pp. 465-473
    [22]
    Matsuoka, M., Ichikawa, H., Saito, A. et al. Expression of a rice homeobox gene causes altered morphology of transgenic plants Plant Cell, 5 (1993),pp. 1039-1048
    [23]
    Müller, K.J., He, X.Q., Fischer, R. et al. Planta, 224 (2006),pp. 1023-1027
    [24]
    Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture Physiol. Planta., 15 (1962),pp. 473-497
    [25]
    Ori, N., Eshed, Y., Chuck, G. et al. Development, 127 (2000),pp. 5523-5532
    [26]
    Phelps-Durr, T.L., Thomas, J., Vahab, P. et al. Plant Cell, 17 (2005),pp. 2886-2898
    [27]
    Reiser, L., Sánchez-Baracaldo, P., Hake, S. Plant Mol. Biol., 42 (2000),pp. 151-166
    [28]
    Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M. et al. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem Genes Dev., 15 (2001),pp. 581-590
    [29]
    Scanlon, M.J. The polar auxin transport inhibitor N-1-Naphthylphthalamic acid disrupts leaf initiation, knox protein regulation, and formation of leaf margins in maize Plant Physiol., 133 (2003),pp. 597-605
    [30]
    Semiarti, E., Ueno, Y., Tsukaya, H. et al. Development, 128 (2001),pp. 1771-1783
    [31]
    Smith, H.M.S., Hake, S. Plant Cell, 15 (2003),pp. 1717-1727
    [32]
    Tattersall, A.D., Turner, L., Knox, M.R. et al. The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development Plant Cell, 17 (2005),pp. 1046-1060
    [33]
    Theodoris, G., Inada, N., Freeling, M. Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 6837-6842
    [34]
    Tian, A.G., Wang, J., Cui, P. et al. Characterization of soybean genomic features by analysis of its expressed sequence tags Theor. Appl. Genet., 108 (2004),pp. 903-913
    [35]
    Venglat, S.P., Dumonceaux, T., Rozwadowski, K. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 4730-4735
    [36]
    Vollbrecht, E., Veit, B., Sinha, N. et al. Nature, 350 (1991),pp. 241-243
    [37]
    Yu, H., Yang, S.H., Goh, C.J. Plant Cell, 12 (2000),pp. 2143-2159
    [38]
    Zhang, J.S., Gu, J., Liu, F.H. et al. A gene encoding a truncated large subunit of rubisco is transcribed and salt-inducible in rice Theor. Appl. Genet., 91 (1995),pp. 361-366
    [39]
    Zhou, H.L., Cao, W.H., Cao, Y.R. et al. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation FEBS Lett., 580 (2006),pp. 1239-1250
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return