5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 7
Jul.  2008
Turn off MathJax
Article Contents

Tackling the epigenome in the pluripotent stem cells

doi: 10.1016/S1673-8527(08)60058-2
More Information
  • Corresponding author: E-mail address: weicl@gis.a-star.edu.sg (Chia-Lin Wei)
  • Received Date: 2008-04-14
  • Accepted Date: 2008-05-24
  • Rev Recd Date: 2008-05-23
  • Available Online: 2008-07-18
  • Publish Date: 2008-07-20
  • Embryonic stem cells are unique in their abilities of self-renewal and to differentiate into many, if not all, cellular lineages. Transcriptional regulation, epigenetic modifications and chromatin structures are the key modulators in controlling such pluripotency nature of embryonic stem cell genomes, particularly in the developmental decisions and the maintenance of cell fates. Among them, epigenetic regulation of gene expression is mediated partly by covalent modifications of core histone proteins including methylation, phosphorylation and acetylation. Moreover, the chromatins in stem cell genome appear as a highly organized structure containing distinct functional domains. Recent rapid progress of new technologies enables us to take a global, unbiased and comprehensive view of the epigenetic modifications and chromatin structures that contribute to gene expression regulation and cell identity during diverse developmental stages. Here, we summarized the latest advances made by high throughput approaches in profiling epigenetic modifications and chromatin conformations, with an emphasis on genome-wide analysis of histone modifications and their implications in pluripotency nature of embryonic stem cells.
  • loading
  • [1]
    Avilion, A.A., Nicolis, S.K., Pevny, L.H. et al. Multipotent cell lineages in early mouse development depend on SOX2 function Genes Dev., 17 (2003),pp. 126-140
    [2]
    Bannister, A.J., Kouzarides, T. Reversing histone methylation Nature, 436 (2005),pp. 1103-1106
    [3]
    Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
    [4]
    Bernstein, B.E., Humphrey, E.L., Erlich, R.L. et al. Methylation of histone H3 Lys 4 in coding regions of active genes Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 8695-8700
    [5]
    Bernstein, B.E., Kamal, M., Lindblad-Toh, K. et al. Genomic maps and comparative analysis of histone modifications in human and mouse Cell, 120 (2005),pp. 169-181
    [6]
    Bernstein, B.E., Mikkelsen, T.S., Xie, X. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells Cell, 125 (2006),pp. 315-326
    [7]
    Bernstein, E., Allis, C.D. RNA meets chromatin Genes Dev., 19 (2005),pp. 1635-1655
    [8]
    Boyer, L.A., Lee, T.I., Cole, M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells Cell, 122 (2005),pp. 947-956
    [9]
    Boyer, L.A., Plath, K., Zeitlinger, J. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells Nature, 441 (2006),pp. 349-353
    [10]
    Broach, J.R. Making the right choice–long-range chromosomal interactions in development Cell, 119 (2004),pp. 583-586
    [11]
    Cao, R., Wang, L., Wang, H. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing Science, 298 (2002),pp. 1039-1043
    [12]
    Chambers, I., Colby, D., Robertson, M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells Cell, 113 (2003),pp. 643-655
    [13]
    Cleard, F., Moshkin, Y., Karch, F. et al. Nat. Genet., 38 (2006),pp. 931-935
    [14]
    Comet, I., Savitskaya, E., Schuettengruber, B. et al. PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter Dev. Cell, 11 (2006),pp. 117-124
    [15]
    Cremer, T., Cremer, M., Dietzel, S. et al. Chromosome territories—a functional nuclear landscape Curr. Opin. Cell Biol., 18 (2006),pp. 307-316
    [16]
    Dekker, J. Gene regulation in the third dimension Science, 319 (2008),pp. 1793-1794
    [17]
    Dekker, J., Rippe, K., Dekker, M. et al. Capturing chromosome conformation Science, 295 (2002),pp. 1306-1311
    [18]
    Donovan, P.J., Gearhart, J. The end of the beginning for pluripotent stem cells Nature, 414 (2001),pp. 92-97
    [19]
    Dostie, J., Richmond, T.A., Arnaout, R.A. et al. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements Genome Res., 16 (2006),pp. 1299-1309
    [20]
    ENCODE Project Consortium Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project Nature, 447 (2007),pp. 799-816
    [21]
    Fortunel, N.O., Otu, H.H., Ng, H.H. et al. Comment on “‘Stemness’: Transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature” Science, 302 (2003),p. 393
    [22]
    Fraser, P., Bickmore, W. Nuclear organization of the genome and the potential for gene regulation Nature, 447 (2007),pp. 413-417
    [23]
    Ginis, I., Luo, Y., Miura, T. et al. Differences between human and mouse embryonic stem cells Dev. Biol., 269 (2004),pp. 360-380
    [24]
    Guccione, E., Martinato, F., Finocchiaro, G. et al. Myc-binding-site recognition in the human genome is determined by chromatin context Nat. Cell Biol., 8 (2006),pp. 764-770
    [25]
    Hebbes, T.R., Clayton, A.L., Thorne, A.W. et al. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain EMBO J., 13 (1994),pp. 1823-1830
    [26]
    Huebert, D.J., Kamal, M., O'Donovan, A. et al. Genome-wide analysis of histone modifications by ChIP-on-chip Methods, 40 (2006),pp. 365-369
    [27]
    Ivanova, N.B., Dimos, J.T., Schaniel, C. et al. A stem cell molecular signature Science, 298 (2002),pp. 601-604
    [28]
    Keller, G.M. Curr. Opin. Cell Biol., 7 (1995),pp. 862-869
    [29]
    Keohane, A.M., O'Neill, L.P., Belyaev, N.D. et al. X-inactivation and histone H4 acetylation in embryonic stem cells Dev. Biol., 180 (1996),pp. 618-630
    [30]
    Kimura, H., Tada, M., Nakatsuji, N. et al. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells Mol. Cell Biol., 24 (2004),pp. 5710-5720
    [31]
    Kirmizis, A., Bartley, S.M., Kuzmichev, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27 Genes Dev., 18 (2004),pp. 1592-1605
    [32]
    Kouzarides, T. Chromatin modifications and their function Cell, 128 (2007),pp. 693-705
    [33]
    Kurdistani, S.K., Tavazoie, S., Grunstein, M. Mapping global histone acetylation patterns to gene expression Cell, 117 (2004),pp. 721-733
    [34]
    Lee, J.H., Hart, S.R., Skalnik, D.G. Histone deacetylase activity is required for embryonic stem cell differentiation Genesis, 38 (2004),pp. 32-38
    [35]
    Lee, T.I., Jenner, R.G., Boyer, L.A. et al. Control of developmental regulators by Polycomb in human embryonic stem cells Cell, 125 (2006),pp. 301-313
    [36]
    Li, Z., Van Calcar, S., Qu, C. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8164-8169
    [37]
    Loh, Y.H., Wu, Q., Chew, J.L. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells Nat. Genet., 38 (2006),pp. 431-440
    [38]
    Maherali, N., Sridharan, R., Xie, W. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution Cell Stem Cell, 1 (2007),pp. 55-70
    [39]
    Mahy, N.L., Perry, P.E., Gilchrist, S. et al. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories J. Cell Biol., 157 (2002),pp. 579-589
    [40]
    Margueron, R., Trojer, P., Reinberg, D. The key to development: Interpreting the histone code? Curr. Opin. Genet. Dev., 15 (2005),pp. 163-176
    [41]
    Martin, C., Zhang, Y. The diverse functions of histone lysine methylation Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 838-849
    [42]
    Meshorer, E., Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation Nat. Rev. Mol. Cell Biol., 7 (2006),pp. 540-546
    [43]
    Mikkelsen, T.S., Ku, M., Jaffe, D.B. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells Nature, 448 (2007),pp. 553-560
    [44]
    Ng, P., Wei, C.L., Sung, W.K. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation Nat. Methods, 2 (2005),pp. 105-111
    [45]
    Nichols, J., Zevnik, B., Anastassiadis, K. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 Cell, 95 (1998),pp. 379-391
    [46]
    Okita, K., Ichisaka, T., Yamanaka, S. Generation of germline-competent induced pluripotent stem cells Nature, 448 (2007),pp. 313-317
    [47]
    Pan, G., Tian, S., Nie, J. et al. Whole-genome analysis of histone h3 lysine 4 and lysine 27 methylation in human embryonic stem cells Cell Stem Cell, 1 (2007),pp. 299-312
    [48]
    Pokholok, D.K., Harbison, C.T., Levine, S. et al. Genome-wide map of nucleosome acetylation and methylation in yeast Cell, 122 (2005),pp. 517-527
    [49]
    Ramalho-Santos, M., Yoon, S., Matsuzaki, Y. et al. “Stemness”: Transcriptional profiling of embryonic and adult stem cells Science, 298 (2002),pp. 597-600
    [50]
    Ren, B., Robert, F., Wyrick, J.J. et al. Genome- wide location and function of DNA binding proteins Science, 290 (2000),pp. 2306-2309
    [51]
    Ringrose, L., Ehret, H., Paro, R. Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes Mol. Cell, 16 (2004),pp. 641-653
    [52]
    Roh, T.Y., Ngau, W.C., Cui, K. et al. High-resolution genome-wide mapping of histone modifications Nat. Biotechnol., 22 (2004),pp. 1013-1016
    [53]
    Ruan, Y., Ooi, H.S., Choo, S.W. et al. Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs) Genome Res., 17 (2007),pp. 828-838
    [54]
    Santos-Rosa, H., Schneider, R., Bernstein, B.E. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin Mol. Cell, 12 (2003),pp. 1325-1332
    [55]
    Sato, N., Meijer, L., Skaltsounis, L. et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor Nat. Med., 10 (2004),pp. 55-63
    [56]
    Scholer, H.R., Balling, R., Hatzopoulos, A.K. et al. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis EMBO J., 8 (1989),pp. 2551-2557
    [57]
    Schubeler, D., MacAlpine, D.M., Scalzo, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote Genes Dev., 18 (2004),pp. 1263-1271
    [58]
    Shivaswamy, S., Iyer, V.R. Genome-wide analysis of chromatin status using tiling microarrays Methods, 41 (2007),pp. 304-311
    [59]
    Shogren-Knaak, M., Ishii, H., Sun, J.M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions Science, 311 (2006),pp. 844-847
    [60]
    Smith, A.G. Embryo-derived stem cells: Of mice and men Annu. Rev. Cell Dev. Biol., 17 (2001),pp. 435-462
    [61]
    Smith, A.G., Heath, J.K., Donaldson, D.D. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides Nature, 336 (1988),pp. 688-690
    [62]
    Squazzo, S.L., O'Geen, H., Komashko, V.M. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner Genome Res., 16 (2006),pp. 890-900
    [63]
    Strahl, B.D., Allis, C.D. The language of covalent histone modifications Nature, 403 (2000),pp. 41-45
    [64]
    Surani, M.A., Hayashi, K., Hajkova, P. Genetic and epigenetic regulators of pluripotency Cell, 128 (2007),pp. 747-762
    [65]
    Szutorisz, H., Georgiou, A., Tora, L. et al. The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells Cell, 127 (2006),pp. 1375-1388
    [66]
    Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell, 126 (2006),pp. 663-676
    [67]
    Tolhuis, B., Palstra, R.J., Splinter, E. et al. Looping and interaction between hypersensitive sites in the active beta-globin locus Mol. Cell, 10 (2002),pp. 1453-1465
    [68]
    Wei, C.L., Miura, T., Robson, P. et al. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state Stem Cells, 23 (2005),pp. 166-185
    [69]
    Wei, C.L., Wu, Q., Vega, V.B. et al. A global map of p53 transcription-factor binding sites in the human genome Cell, 124 (2006),pp. 207-219
    [70]
    Wernig, M., Meissner, A., Foreman, R. et al. Nature, 448 (2007),pp. 318-324
    [71]
    Xu, N., Tsai, C.L., Lee, J.T. Transient homologous chromosome pairing marks the onset of X inactivation Science, 311 (2006),pp. 1149-1152
    [72]
    Yang, P.K., Kuroda, M.I. Noncoding RNAs and intranuclear positioning in monoallelic gene expression Cell, 128 (2007),pp. 777-786
    [73]
    Ying, Q.L., Nichols, J., Chambers, I. et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 Cell, 115 (2003),pp. 281-292
    [74]
    Zhang, J., Tam, W.L., Tong, G.Q. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1 Nat. Cell Biol., 8 (2006),pp. 1114-1123
    [75]
    Zhao, X.D., Han, X., Chew, J.L. et al. Whole-genome mapping of histone h3 lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells Cell Stem Cell, 1 (2007),pp. 286-298
    [76]
    Zhao, Z., Tavoosidana, G., Sjolinder, M. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions Nat. Genet., 38 (2006),pp. 1341-1347
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return