[1] |
Avilion, A.A., Nicolis, S.K., Pevny, L.H. et al. Multipotent cell lineages in early mouse development depend on SOX2 function Genes Dev., 17 (2003),pp. 126-140
|
[2] |
Bannister, A.J., Kouzarides, T. Reversing histone methylation Nature, 436 (2005),pp. 1103-1106
|
[3] |
Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
|
[4] |
Bernstein, B.E., Humphrey, E.L., Erlich, R.L. et al. Methylation of histone H3 Lys 4 in coding regions of active genes Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 8695-8700
|
[5] |
Bernstein, B.E., Kamal, M., Lindblad-Toh, K. et al. Genomic maps and comparative analysis of histone modifications in human and mouse Cell, 120 (2005),pp. 169-181
|
[6] |
Bernstein, B.E., Mikkelsen, T.S., Xie, X. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells Cell, 125 (2006),pp. 315-326
|
[7] |
Bernstein, E., Allis, C.D. RNA meets chromatin Genes Dev., 19 (2005),pp. 1635-1655
|
[8] |
Boyer, L.A., Lee, T.I., Cole, M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells Cell, 122 (2005),pp. 947-956
|
[9] |
Boyer, L.A., Plath, K., Zeitlinger, J. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells Nature, 441 (2006),pp. 349-353
|
[10] |
Broach, J.R. Making the right choice–long-range chromosomal interactions in development Cell, 119 (2004),pp. 583-586
|
[11] |
Cao, R., Wang, L., Wang, H. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing Science, 298 (2002),pp. 1039-1043
|
[12] |
Chambers, I., Colby, D., Robertson, M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells Cell, 113 (2003),pp. 643-655
|
[13] |
Cleard, F., Moshkin, Y., Karch, F. et al. Nat. Genet., 38 (2006),pp. 931-935
|
[14] |
Comet, I., Savitskaya, E., Schuettengruber, B. et al. PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter Dev. Cell, 11 (2006),pp. 117-124
|
[15] |
Cremer, T., Cremer, M., Dietzel, S. et al. Chromosome territories—a functional nuclear landscape Curr. Opin. Cell Biol., 18 (2006),pp. 307-316
|
[16] |
Dekker, J. Gene regulation in the third dimension Science, 319 (2008),pp. 1793-1794
|
[17] |
Dekker, J., Rippe, K., Dekker, M. et al. Capturing chromosome conformation Science, 295 (2002),pp. 1306-1311
|
[18] |
Donovan, P.J., Gearhart, J. The end of the beginning for pluripotent stem cells Nature, 414 (2001),pp. 92-97
|
[19] |
Dostie, J., Richmond, T.A., Arnaout, R.A. et al. Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements Genome Res., 16 (2006),pp. 1299-1309
|
[20] |
ENCODE Project Consortium Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project Nature, 447 (2007),pp. 799-816
|
[21] |
Fortunel, N.O., Otu, H.H., Ng, H.H. et al. Comment on “‘Stemness’: Transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature” Science, 302 (2003),p. 393
|
[22] |
Fraser, P., Bickmore, W. Nuclear organization of the genome and the potential for gene regulation Nature, 447 (2007),pp. 413-417
|
[23] |
Ginis, I., Luo, Y., Miura, T. et al. Differences between human and mouse embryonic stem cells Dev. Biol., 269 (2004),pp. 360-380
|
[24] |
Guccione, E., Martinato, F., Finocchiaro, G. et al. Myc-binding-site recognition in the human genome is determined by chromatin context Nat. Cell Biol., 8 (2006),pp. 764-770
|
[25] |
Hebbes, T.R., Clayton, A.L., Thorne, A.W. et al. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain EMBO J., 13 (1994),pp. 1823-1830
|
[26] |
Huebert, D.J., Kamal, M., O'Donovan, A. et al. Genome-wide analysis of histone modifications by ChIP-on-chip Methods, 40 (2006),pp. 365-369
|
[27] |
Ivanova, N.B., Dimos, J.T., Schaniel, C. et al. A stem cell molecular signature Science, 298 (2002),pp. 601-604
|
[28] |
Keller, G.M. Curr. Opin. Cell Biol., 7 (1995),pp. 862-869
|
[29] |
Keohane, A.M., O'Neill, L.P., Belyaev, N.D. et al. X-inactivation and histone H4 acetylation in embryonic stem cells Dev. Biol., 180 (1996),pp. 618-630
|
[30] |
Kimura, H., Tada, M., Nakatsuji, N. et al. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells Mol. Cell Biol., 24 (2004),pp. 5710-5720
|
[31] |
Kirmizis, A., Bartley, S.M., Kuzmichev, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27 Genes Dev., 18 (2004),pp. 1592-1605
|
[32] |
Kouzarides, T. Chromatin modifications and their function Cell, 128 (2007),pp. 693-705
|
[33] |
Kurdistani, S.K., Tavazoie, S., Grunstein, M. Mapping global histone acetylation patterns to gene expression Cell, 117 (2004),pp. 721-733
|
[34] |
Lee, J.H., Hart, S.R., Skalnik, D.G. Histone deacetylase activity is required for embryonic stem cell differentiation Genesis, 38 (2004),pp. 32-38
|
[35] |
Lee, T.I., Jenner, R.G., Boyer, L.A. et al. Control of developmental regulators by Polycomb in human embryonic stem cells Cell, 125 (2006),pp. 301-313
|
[36] |
Li, Z., Van Calcar, S., Qu, C. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8164-8169
|
[37] |
Loh, Y.H., Wu, Q., Chew, J.L. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells Nat. Genet., 38 (2006),pp. 431-440
|
[38] |
Maherali, N., Sridharan, R., Xie, W. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution Cell Stem Cell, 1 (2007),pp. 55-70
|
[39] |
Mahy, N.L., Perry, P.E., Gilchrist, S. et al. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories J. Cell Biol., 157 (2002),pp. 579-589
|
[40] |
Margueron, R., Trojer, P., Reinberg, D. The key to development: Interpreting the histone code? Curr. Opin. Genet. Dev., 15 (2005),pp. 163-176
|
[41] |
Martin, C., Zhang, Y. The diverse functions of histone lysine methylation Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 838-849
|
[42] |
Meshorer, E., Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation Nat. Rev. Mol. Cell Biol., 7 (2006),pp. 540-546
|
[43] |
Mikkelsen, T.S., Ku, M., Jaffe, D.B. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells Nature, 448 (2007),pp. 553-560
|
[44] |
Ng, P., Wei, C.L., Sung, W.K. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation Nat. Methods, 2 (2005),pp. 105-111
|
[45] |
Nichols, J., Zevnik, B., Anastassiadis, K. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 Cell, 95 (1998),pp. 379-391
|
[46] |
Okita, K., Ichisaka, T., Yamanaka, S. Generation of germline-competent induced pluripotent stem cells Nature, 448 (2007),pp. 313-317
|
[47] |
Pan, G., Tian, S., Nie, J. et al. Whole-genome analysis of histone h3 lysine 4 and lysine 27 methylation in human embryonic stem cells Cell Stem Cell, 1 (2007),pp. 299-312
|
[48] |
Pokholok, D.K., Harbison, C.T., Levine, S. et al. Genome-wide map of nucleosome acetylation and methylation in yeast Cell, 122 (2005),pp. 517-527
|
[49] |
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y. et al. “Stemness”: Transcriptional profiling of embryonic and adult stem cells Science, 298 (2002),pp. 597-600
|
[50] |
Ren, B., Robert, F., Wyrick, J.J. et al. Genome- wide location and function of DNA binding proteins Science, 290 (2000),pp. 2306-2309
|
[51] |
Ringrose, L., Ehret, H., Paro, R. Distinct contributions of histone H3 lysine 9 and 27 methylation to locus-specific stability of polycomb complexes Mol. Cell, 16 (2004),pp. 641-653
|
[52] |
Roh, T.Y., Ngau, W.C., Cui, K. et al. High-resolution genome-wide mapping of histone modifications Nat. Biotechnol., 22 (2004),pp. 1013-1016
|
[53] |
Ruan, Y., Ooi, H.S., Choo, S.W. et al. Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs) Genome Res., 17 (2007),pp. 828-838
|
[54] |
Santos-Rosa, H., Schneider, R., Bernstein, B.E. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin Mol. Cell, 12 (2003),pp. 1325-1332
|
[55] |
Sato, N., Meijer, L., Skaltsounis, L. et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor Nat. Med., 10 (2004),pp. 55-63
|
[56] |
Scholer, H.R., Balling, R., Hatzopoulos, A.K. et al. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis EMBO J., 8 (1989),pp. 2551-2557
|
[57] |
Schubeler, D., MacAlpine, D.M., Scalzo, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote Genes Dev., 18 (2004),pp. 1263-1271
|
[58] |
Shivaswamy, S., Iyer, V.R. Genome-wide analysis of chromatin status using tiling microarrays Methods, 41 (2007),pp. 304-311
|
[59] |
Shogren-Knaak, M., Ishii, H., Sun, J.M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions Science, 311 (2006),pp. 844-847
|
[60] |
Smith, A.G. Embryo-derived stem cells: Of mice and men Annu. Rev. Cell Dev. Biol., 17 (2001),pp. 435-462
|
[61] |
Smith, A.G., Heath, J.K., Donaldson, D.D. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides Nature, 336 (1988),pp. 688-690
|
[62] |
Squazzo, S.L., O'Geen, H., Komashko, V.M. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner Genome Res., 16 (2006),pp. 890-900
|
[63] |
Strahl, B.D., Allis, C.D. The language of covalent histone modifications Nature, 403 (2000),pp. 41-45
|
[64] |
Surani, M.A., Hayashi, K., Hajkova, P. Genetic and epigenetic regulators of pluripotency Cell, 128 (2007),pp. 747-762
|
[65] |
Szutorisz, H., Georgiou, A., Tora, L. et al. The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells Cell, 127 (2006),pp. 1375-1388
|
[66] |
Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell, 126 (2006),pp. 663-676
|
[67] |
Tolhuis, B., Palstra, R.J., Splinter, E. et al. Looping and interaction between hypersensitive sites in the active beta-globin locus Mol. Cell, 10 (2002),pp. 1453-1465
|
[68] |
Wei, C.L., Miura, T., Robson, P. et al. Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state Stem Cells, 23 (2005),pp. 166-185
|
[69] |
Wei, C.L., Wu, Q., Vega, V.B. et al. A global map of p53 transcription-factor binding sites in the human genome Cell, 124 (2006),pp. 207-219
|
[70] |
Wernig, M., Meissner, A., Foreman, R. et al. Nature, 448 (2007),pp. 318-324
|
[71] |
Xu, N., Tsai, C.L., Lee, J.T. Transient homologous chromosome pairing marks the onset of X inactivation Science, 311 (2006),pp. 1149-1152
|
[72] |
Yang, P.K., Kuroda, M.I. Noncoding RNAs and intranuclear positioning in monoallelic gene expression Cell, 128 (2007),pp. 777-786
|
[73] |
Ying, Q.L., Nichols, J., Chambers, I. et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 Cell, 115 (2003),pp. 281-292
|
[74] |
Zhang, J., Tam, W.L., Tong, G.Q. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1 Nat. Cell Biol., 8 (2006),pp. 1114-1123
|
[75] |
Zhao, X.D., Han, X., Chew, J.L. et al. Whole-genome mapping of histone h3 lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells Cell Stem Cell, 1 (2007),pp. 286-298
|
[76] |
Zhao, Z., Tavoosidana, G., Sjolinder, M. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions Nat. Genet., 38 (2006),pp. 1341-1347
|