5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 7
Jul.  2008
Turn off MathJax
Article Contents

Future impact of integrated high-throughput methylome analyses on human health and disease

doi: 10.1016/S1673-8527(08)60057-0
More Information
  • Corresponding author: E-mail address: l.butcher@ucl.ac.uk (Lee M Butcher)
  • Received Date: 2008-04-04
  • Accepted Date: 2008-06-09
  • Rev Recd Date: 2008-06-08
  • Available Online: 2008-07-18
  • Publish Date: 2008-07-20
  • A spate of high-powered genome-wide association studies (GWAS) have recently identified numerous single-nucleotide polymorphisms (SNPs) robustly linked with complex disease. Despite interrogating the majority of common human variation, these SNPs only account for a small proportion of the phenotypic variance, which suggests genetic factors are acting in concert with non-genetic factors. Although environmental measures are logical covariants for genotype-phenotype investigations, another non-genetic intermediary exists: epigenetics. Epigenetics is the analysis of somatically-acquired and, in some cases, transgenerationally inherited epigenetic modifications that regulate gene expression, and offers to bridge the gap between genetics and environment to understand phenotype. The most widely studied epigenetic mark is DNA methylation. Aberrant methylation at gene promoters is strongly implicated in disease etiology, most notably cancer. This review will highlight the importance of DNA methylation as an epigenetic regulator, outline techniques to characterize the DNA methylome and present the idea of reverse phenotyping, where multiple layers of analysis are integrated at the individual level to create personalized digital phenotypes and, at a phenotype level, to identify novel molecular signatures of disease.
  • loading
  • [1]
    Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
    [2]
    Baylin, S.B., Herman, J.G. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics Trends Genet., 16 (2000),pp. 168-174
    [3]
    Beck, S., and Rakyan, V.K. (2008). The methylome: Approaches for global DNA methylation profiling. Trends Genet. doi:10.1016/j.tig. 2008.01.006.
    [4]
    Bentley, D.R. Whole-genome resequencing Curr. Opin. Genet. Dev., 16 (2006),pp. 545-552
    [5]
    Bird, A. DNA methylation patterns and epigenetic memory Genes Dev., 16 (2002),pp. 6-21
    [6]
    Bird, A.P. CpG-rich islands and the function of DNA methylation Nature, 321 (1986),pp. 209-213
    [7]
    Boyer, L.A., Plath, K., Zeitlinger, J. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells Nature, 441 (2006),pp. 349-353
    [8]
    Cameron, E.E., Bachman, K.E., Myohanen, S. et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer Nat. Genet., 21 (1999),pp. 103-107
    [9]
    Caspi, A., McClay, J., Moffitt, T.E. et al. Role of genotype in the cycle of violence in maltreated children Science, 297 (2002),pp. 851-854
    [10]
    Caspi, A., Sugden, K., Moffitt, T.E. et al. Science, 301 (2003),pp. 386-389
    [11]
    Caspi, A., Williams, B., Kim-Cohen, J. et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 18860-18865
    [12]
    Ching, T.T., Maunakea, A.K., Jun, P. et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3 Nat. Genet., 37 (2005),pp. 645-651
    [13]
    Cokus, S.J., Feng, S., Zhang, X. et al. Nature, 452 (2008),pp. 215-219
    [14]
    Collins, F.S., Green, E.D., Guttmacher, A.E. et al. A vision for the future of genomics research Nature, 422 (2003),pp. 835-847
    [15]
    Down, T.A., Rakyan, V.K., Turner, D.J., Flicek, P., Li, H., Kulesha, E., Gräf, S., Johnson, N., Herrero, J., Tomasello, M., Thorne, N.P., Bäckdahl, L., Herberth, M., Howe, K.L., Jackson, D.K., Miretti, M., Marioni, J.C., Birney, E., Hubbard, T.J.P., Durbin, R., Tavaré, S., and Beck, S. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. In Press.
    [16]
    Eads, C.A., Danenberg, K.D., Kawakami, K. et al. MethyLight: A high-throughput assay to measure DNA methylation Nucleic Acids Res., 28 (2000),p. e32
    [17]
    Eckhardt, F., Lewin, J., Cortese, R. et al. DNA methylation profiling of human chromosomes 6, 20 and 22 Nat. Genet., 38 (2006),pp. 1378-1385
    [18]
    Ehrich, M., Nelson, M.R., Stanssens, P. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 15785-15790
    [19]
    Erlanson, D.A., Chen, L., Verdine, G.L. DNA methylation through a locally unpaired intermediate J. Am. Chem. Soc., 115 (1993),pp. 12583-12584
    [20]
    Feinberg, A.P., Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts Nature, 301 (1983),pp. 89-92
    [21]
    Frommer, M., McDonald, L.E., Millar, D.S. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 1827-1831
    [22]
    Gabriel, S.B., Schaffner, S.F., Nguyen, H. et al. The structure of haplotype blocks in the human genome Science, 296 (2002),pp. 2225-2229
    [23]
    Galm, O., Herman, J.G., Baylin, S.B. The fundamental role of epigenetics in hematopoietic malignancies Blood Rev., 20 (2006),pp. 1-13
    [24]
    Gitan, R.S., Shi, H., Chen, C.M. et al. Methylation-specific oligonucleotide microarray: A new potential for high-throughput methylation analysis Genome Res., 12 (2002),pp. 158-164
    [25]
    Goldstein, M., Meller, I., Orr-Urtreger, A. Genes Chromosomes Cancer, 46 (2007),pp. 1028-1038
    [26]
    Grønbæk, K., Hother, C., Jones, P.A. Epigenetic changes in cancer APMIS, 115 (2007),pp. 1039-1059
    [27]
    Hardenbol, P., Banér, J., Jain, M. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes Nat. Biotechnol., 21 (2003),pp. 673-678
    [28]
    Hatada, I., Fukasawa, M., Kimura, M. et al. Genome-wide profiling of promoter methylation in human Oncogene, 25 (2006),pp. 3059-3064
    [29]
    Hatada, I., Hayashizaki, Y., Hirotsune, S. et al. A genomic scanning method for higher organisms using restriction sites as landmarks Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 9523-9527
    [30]
    Hotchkiss, R.D. The mode of action of chemotherapeutic agents Ann. Rev. Microbiol., 2 (1948),pp. 183-214
    [31]
    Ibrahim, A.E., Thorne, N.P., Baird, K. et al. MMASS: An optimized array-based method for assessing CpG island methylation Nucleic Acids Res., 34 (2006),p. e136
    [32]
    International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
    [33]
    Iyer, V.R., Horak, C.E., Scafe, C.S. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF Nature, 409 (2001),pp. 533-538
    [34]
    Jacinto, FV., Ballestar, E., Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): Hunting down the DNA methylome Biotechniques, 44 (2008),p. 35
    [35]
    Jacinto, FV, Esteller, et al. Mutator pathways unleashed by epigenetic silencing in human cancer Mutagenesis, 22 (2007),pp. 247-253
    [36]
    Karolchik, D., Baertsch, R., Diekhans, M. et al. The UCSC Genome Browser Database Nucleic Acids Res., 31 (2003),pp. 51-54
    [37]
    Karolchik, D., Hinrichs, A.S., Furey, T.S. et al. The UCSC Table Browser data retrieval tool Nucleic Acids Res., 32 (2004),pp. D493-D496
    [38]
    Kim, S.J., Kang, H.S., Chang, H.L. et al. Promoter hypomethylation of the N- acetyltransferase 1 gene in breast cancer Oncol. Rep., 19 (2008),pp. 663-668
    [39]
    Korba, B.E., Wilson, V.L., Yoakum, G.H. Induction of hepatitis B virus core gene in human cells by cytosine demethylation in the promoter Science, 228 (1985),pp. 1103-1106
    [40]
    Kudriashova, I.B., Vaniushin, B.F. Rat liver methylation of nuclear DNA following hydrocortisone induction Biokhimiia, 41 (1976),pp. 215-222
    [41]
    Mailman, M.D., Feolo, M., Jin, Y. et al. The NCBI dbGaP database of genotypes and phenotypes Nat. Genet., 39 (2007),pp. 1181-1186
    [42]
    Majumder, S., Kutay, H., Datta, J. et al. Epigenetic regulation of metallothionein-i gene expression: Differential regulation of methylated and unmethylated promoters by DNA methyltransferases and methyl CpG binding proteins J. Cell. Biochem., 97 (2006),pp. 1300-1316
    [43]
    Male, C.J., Christensen, J.R. Synthesis of messenger ribonucleic acid after bacteriophage T1 infection J. Virol., 6 (1970),pp. 727-737
    [44]
    McCarroll, S.A., Altshuler, D.M. Copy-number variation and association studies of human disease Nat. Genet., 39 (2007),pp. S37-S42
    [45]
    Murrell, A., Heeson, S., Cooper, W.N. et al. Hum. Mol. Genet., 13 (2004),pp. 247-255
    [46]
    Murrell, A., Rakyan, V.K., Beck, S. From genome to epigenome Hum. Mol. Genet., 14 (2005),pp. R3-R10
    [47]
    Neddermann, P., Jiricny, J. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 1642-1646
    [48]
    Rauch, T., Li, H., Wu, X. et al. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells Cancer Res., 66 (2006),pp. 7939-7947
    [49]
    Rauch, T., Pfeifer, G.P. Methylated-CpG island recovery assay: A new technique for the rapid detection of methylated-CpG islands in cancer Lab. Invest., 85 (2005),pp. 1172-1180
    [50]
    Rauch, T., Wang, Z., Zhang, X. et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 5527-5532
    [51]
    Rauch, T.A., Zhong, X., Wu, X. et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 252-257
    [52]
    Raval, A., Tanner, S.M., Byrd, J.C. et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia Cell, 129 (2007),pp. 879-890
    [53]
    Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development Nature, 447 (2007),pp. 425-432
    [54]
    Ren, B., Robert, F., Wyrick, J.J. et al. Genome-wide location and function of DNA binding proteins Science, 290 (2000),pp. 2306-2309
    [55]
    Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X. et al. Leuk. Res., 31 (2007),pp. 1521-1528
    [56]
    Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X. et al. Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia Leuk. Res., 32 (2008),pp. 487-490
    [57]
    Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X. et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia Oncogene, 24 (2005),pp. 7213-7223
    [58]
    Sakai, T., Toguchida, J., Ohtani, N. et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene Am. J. Hum. Gen., 48 (1991),pp. 880-888
    [59]
    Saxena, R., Voight, B.F., Lyssenko, V. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels Science, 316 (2007),pp. 1331-1336
    [60]
    Saxonov, S., Berg, P., Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 1412-1417
    [61]
    Schena, M., Shalon, D., Davis, R.W. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science, 270 (1995),pp. 467-470
    [62]
    Schenk, T., Stengel, S., Goellner, S. et al. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancie Genes Chromosomes Cancer, 46 (2007),pp. 796-804
    [63]
    Scott, L.J., Mohlke, K.L., Bonnycastle, L.L. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants Science, 316 (2007),pp. 1341-1345
    [64]
    Shen, L., Toyota, M., Kondo, Y. et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 18654-18659
    [65]
    Sibghat, U., DNA-substrate sequence specificity of human G:T mismatch repair activity Nucleic Acids Res., 21 (1993),pp. 1281-1287
    [66]
    Sladek, R., Rocheleau, G., Rung, J. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes Nature, 445 (2007),pp. 881-885
    [67]
    Smiraglia, D.J., Rush, L.J., Frühwald, M.C. et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignacies Hum. Mol. Genet., 10 (2001),pp. 1413-1419
    [68]
    Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes Nat. Genet., 39 (2006),pp. 770-775
    [69]
    Strichman-Almashanu, L.Z., Lee, R.S., Onyango, P.O. et al. A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes Genome Res., 12 (2002),pp. 543-554
    [70]
    Taylor, K.H., Kramer, R.S., Davis, J.W. et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing Cancer Res., 67 (2007),pp. 8511-8518
    [71]
    The International HapMap Consortium The International HapMap Project Nature, 426 (2003),pp. 789-796
    [72]
    The International HapMap Consortium A haplotype map of the human genome Nature, 437 (2005),pp. 1299-1320
    [73]
    The International HapMap Consortium A second generation human haplotype map of over 3.1 million SNPs Nature, 449 (2007),pp. 851-861
    [74]
    Tompa, R., McCallum, C.M., Delrow, J. et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3 Curr. Biol., 12 (2002),pp. 65-68
    [75]
    Tran, R.K., Henikoff, J.G., Zilberman, D. et al. Curr. Biol., 15 (2005),pp. 154-159
    [76]
    Turner, B.M. Defining an epigenetic code Nat. Cell Biol., 9 (2007),pp. 2-6
    [77]
    Venter, J.C., Adams, M.D., Myers, E.W. et al. The sequence of the human genome Science, 291 (2001),pp. 1304-1351
    [78]
    Waddington, C.H. The epigenotype Endeavour, 1 (1942),pp. 18-20
    [79]
    Watanabe, M., Ogawa, Y., Itoh, K. et al. Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma Lab. Invest., 88 (2008),pp. 48-57
    [80]
    Weber, M., Davies, J.J., Wittig, D. et al. Chromosome-wide and promoter- specific analyses identify sites of differential DNA methylation in normal and transformed human cells Nat. Genet., 37 (2005),pp. 853-862
    [81]
    Weber, M., Hellmann, I., Stadler, M.B. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome Nat. Genet., 39 (2007),pp. 457-466
    [82]
    Wellcome Trust Case Control Consortium (WTCCC) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls Nature, 447 (2007),pp. 661-678
    [83]
    Wu, L.P., Wang, X., Li, L. et al. Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter Mol. Cell. Biol., 28 (2008),pp. 3219-3235
    [84]
    Yoo, C.B., Jones, P.A. Epigenetic therapy of cancer: Past, present and future Nat. Rev. Drug Discov., 5 (2006),pp. 37-50
    [85]
    Zeggini, E., Weedon, M.N., Lindgren, C.M. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes Science, 316 (2007),pp. 1336-1341
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return