[1] |
Abecasis, G.R., Cardon, L.R., Cookson, W.O.C. A general test of association for quantitative traits in nuclear families Am. J. Hum. Genet., 66 (2000),pp. 279-292
|
[2] |
Abecasis, G.R., Cookson, W.O.C., Cardon, L.R. Pedigree tests of linkage disequilibrium Eur. J. Hum. Genet., 8 (2000),pp. 545-551
|
[3] |
Akey, J., Jin, L., Xiong, M. Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur. J. Hum. Genet., 9 (2001),pp. 291-300
|
[4] |
Chapman, N.H., Wijsman, E.M. Genome screens using linkage disequilibrium tests: optimal marker characteristics and feasibility Am. J. Hum. Genet., 63 (1998),pp. 1872-1885
|
[5] |
Deng, H.W., Chen, W.M., Recker, R.R. QTL fine mapping by measuring and test for Hardy-Weinberg and linkage disequilibrium at a series of linked marker loci in extreme samples of populations Am. J. Hum. Genet., 66 (2000),pp. 1027-1045
|
[6] |
Fan, R.Z., Spinka, C., Jin, L. et al. Pedigree linkage disequilibrium mapping of quantitative trait loci Eur. J. Hum. Genet., 13 (2005),pp. 216-231
|
[7] |
Keavney, B., McKenzie, C.A., Connell, J.M. et al. Hum. Mol. Genet., 7 (1998),pp. 1745-1751
|
[8] |
Lehmann, E.L.
|
[9] |
Li, Y.M., Xiang, Y., Sun, Z.Q. An entropy-based measure for QTL mapping using extreme samples of population Hum. Hered., 65 (2007),pp. 121-128
|
[10] |
Shannon, C.E. A mathematical theory of communication MD Comput., 14 (1997),pp. 306-317
|
[11] |
Xiong, M., Zhao, J., Boerwinkle, E. Haplotype block linkage disequilibrium mapping Front Biosci., 8 (2003),pp. a85-a93
|
[12] |
Xiang, Y., Li, Y.M., Liu, Z.M. et al. An entropy-based index for fine-scale mapping of QTL J. Genet. Genomic, 34 (2007),pp. 373-380
|
[13] |
Zhao, J.Y., Boerwinkle, E., Xiong, M. An entropy-based statistic for genomewide association studies Am. J. Hum. Genet., 77 (2005),pp. 27-40
|