5.9
CiteScore
5.9
Impact Factor
Volume 35 Issue 2
Feb.  2008
Turn off MathJax
Article Contents

Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants

doi: 10.1016/S1673-8527(08)60010-7
More Information
  • Corresponding author: E-mail address: mfzhang@zju.edu.cn (Mingfang Zhang)
  • Received Date: 2007-09-10
  • Accepted Date: 2007-11-09
  • Rev Recd Date: 2007-11-08
  • Available Online: 2008-04-11
  • Publish Date: 2008-02-20
  • In plant cells, there are three organelles: the nucleus, chloroplast, and mitochondria that store genetic information. The nucleus possesses the majority of genetic information and controls most aspects of organelles gene expression, growth, and development. In return, organelles also send signals back to regulate nuclear gene expression, a process defined as retrograde regulation. The best studies of organelles to nucleus retrograde regulation exist in plant chloroplast-to-nuclear regulation and yeast mitochondria-to-nuclear regulation. In this review, we summarize the recent understanding of mitochondrial retrograde regulation in higher plant, which involves multiple potential signaling pathway in relation to cytoplasmic male-sterility, biotic stress, and abiotic stress. With respect to mitochondrial retrograde regulation signal pathways involved in cytoplasmic male-sterility, we consider that nuclear transcriptional factor genes are the targeted genes regulated by mitochondria to determine the abnormal reproductive development, and the MAPK signaling pathway may be involved in this regulation in Brassica juncea. When plants suffer biotic and abiotic stress, plant cells will initiate cell death or other events directed toward recovering from stress. During this process, we propose that mitochondria may determine how plant cell responds to a given stress through retrograde regulation. Meanwhile, several transducer molecules have also been discussed here. In particular, the Paepe research group reported that leaf mitochondrial modulated whole cell redox homeostasis, set antioxidant capacity, and determined stress resistance through altered signaling and diurnal regulation, which is an indication of plant mitochondria with more active function than ever.
  • loading
  • [1]
    Alvarez, M.E. Salicylic acid in the machinery of hypersensitive cell death and disease resistance Plant Mol. Biol., 44 (2000),pp. 429-442
    [2]
    Amirsadeghi, S., Robson, C.A., Vanlerberghe, G.C. The role of the mitochondrion in plant responses to biotic stress Physiologia Plantarum, 129 (2007),pp. 253-266
    [3]
    Balk, J., Leaver, C.J. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release Plant Cell, 13 (2001),pp. 1803-1818
    [4]
    Bereterbide, A., Hernould, M., Farbos, I. et al. Plant J., 29 (2002),pp. 607-615
    [5]
    Budar, F., Pelletier, G. Male sterility in plant: occurrence, determinism, significance and use Life Sci., 324 (2001),pp. 543-550
    [6]
    Burke, P.V., Raaitt, D.C., Allen, L.A. et al. Effects of oxygen concentration on the expression of cytochrome c and cytochrome c oxidase genes in yeast J. Biol. Chem., 272 (1997),pp. 14705-14712
    [7]
    Butow, R.A., Avadhani, N.G. Mitochondrial signaling: the retrograde response Mol. Cell, 14 (2004),pp. 1-15
    [8]
    Carlsson, J., Lagercrantz, U., Dundström, J. et al. Plant J., 49 (2007),pp. 452-456
    [9]
    Chen, W., Provart, N.J., Glazebrook, J. et al. Plant Cell, 14 (2002),pp. 559-574
    [10]
    Chen, W., Singh, K.B. Plant J., 19 (1999),pp. 667-678
    [11]
    Cheng, S.H., Willmann, M.R., Chen, H.C. et al. Plant Physiol., 129 (2002),pp. 469-485
    [12]
    Chung, H.J., Ferl, R.J. Plant Physiol., 121 (1999),pp. 429-436
    [13]
    Dangl, J.L., Jones, J.D.G. Plant pathogens and integrated defense responses to infection Nature, 411 (2001),pp. 826-833
    [14]
    Delledonne, M. NO news is good news for plants Curr. Opin. Plant Biol., 8 (2005),pp. 390-396
    [15]
    Devaux, F., Carvajal, E., Moye-Rowley, S. et al. Genome-wide studies on the nuclear PDR3-controlled response to mitochondrial dysfunction in yeast FEBS Lett., 515 (2002),pp. 25-28
    [16]
    Djajanegara, I., Finnegan, P.M., Mathieu, C. et al. Regulation of alternative oxidase gene expression in soybean Plant Mol. Biol., 50 (2002),pp. 735-742
    [17]
    Dojcinovic, D., Krosting, J., Harris, A.J. et al. Plant Mol. Biol., 58 (2005),pp. 159-175
    [18]
    Dutilleul, C., Garmier, M., Noctor, G. et al. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation Plant Cell, 15 (2003),pp. 1212-1226
    [19]
    Foyer, C.H., Noctor, G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses Plant Cell, 17 (2005),pp. 1866-1875
    [20]
    Frank, S.A., Barr, C.M. Programmed cell death and hybrid imcompatibility J. Hered., 94 (2003),pp. 181-183
    [21]
    Fujii, S., Komatsu, S., Toriyama, K. Retrograde regualtion of nuclear gene expression in CW-CMS of rice Plant Mol. Biol., 63 (2007),pp. 405-417
    [22]
    Gilliland, A., Singh, D.P., Hayward, J.M. et al. Genetic modification of alternative respiration has differential effects on antimycin A–induced versus salicylic acid–induced resistance to Tobacco mosaic virus Plant Physiol., 132 (2003),pp. 1518-1528
    [23]
    Greenberg, J.T., Yao, N. The role and regulation of programmed cell death in plant–pathogen interactions Cell Microbiol., 6 (2004),pp. 201-211
    [24]
    Guaragnella, N., Butow, R.A. ATO3 encoding a putative outward ammonium transporter is an RTG-independent retrograde responsive gene regulated by GCN4 and the Ssy1-Ptr3-Ssy5 amino acid sensor system J. Biol. Chem., 278 (2003),pp. 45882-45887
    [25]
    Hama, E., Takumi, S., Ogihara, Y. et al. Pistillody is caused by alteration to the class-B MADS-box gene expression pattern in alloplasmic wheats Planta, 218 (2004),pp. 712-720
    [26]
    Hanson, M.R., Bentolila, S. Interaction of mitochondrial and nuclear genes that affect male gametophyte development Plant Cell, 16 (2004),pp. S154-S169
    [27]
    Henriksson, E., Olsson, A.S.B., Johannesson, H. et al. Homeodomain leucine zipper class I genes in Arabidopsis Expression patters and phylogenetic relationships. Plant Physiol., 139 (2005),pp. 509-518
    [28]
    Jones, A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci., 5 (2000),pp. 225-230
    [29]
    Karpova, O.V., Kuzmin, E.V., Elthon, T.E. et al. Differential expression of alternative oxidase genes in maize mitochondrial mutants Plant Cell, 14 (2002),pp. 3271-3284
    [30]
    Kelly, D.P., Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function Genes Dev., 18 (2004),pp. 357-368
    [31]
    Koussevitzky, S., Nott, A., Mockler, T.C. et al. Signals from chloroplasts converge to regulate nuclear gene expression Science, 316 (2007),pp. 715-719
    [32]
    Kuzmin, E.V., Karpova, O.V., Elthon, T.E. et al. Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins J. Biol. Chem., 279 (2004),pp. 20672-20677
    [33]
    Kuzniak, E., Urbanek, H. The involvement of hydrogen peroxide in plant responses to stresses Acta Physiol. Plant, 22 (2000),pp. 195-203
    [34]
    Laloi, C., Apel, K., Danon, A. Reactive oxygen signaling: the latest news Curr. Opin. Plant Biol., 7 (2004),pp. 323-328
    [35]
    Lam, E., Kato, N., Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response Nature, 411 (2001),pp. 848-853
    [36]
    Lee, B., Lee, H., Xiong, L. et al. A mitochondrial Complex I defect impairs cold-regulated nuclear gene expression Plant Cell, 14 (2002),pp. 1235-1251
    [37]
    Li, S.Q., Wan, C.X., Kong, J. et al. Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria Funct. Plant Biol., 31 (2004),pp. 369-376
    [38]
    Liao, X.S., Small, W.C., Srere, P.A. et al. Mol. Cell Biol., 11 (1991),pp. 38-46
    [39]
    Linker, B., Börner, T. Mitochondrial effects on flower and pollen development Mitochondrion, 5 (2005),pp. 389-402
    [40]
    Linker, B., Nothnagel, T., Börner, T. Plant J., 34 (2003),pp. 27-37
    [41]
    Liu, Z.C., Butow, R.A. Mitochondrial retrograde signaling Annu. Rev. Genet., 40 (2006),pp. 159-185
    [42]
    Logan, D.C., Knight, M.R. Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants Plant Physiol., 133 (2003),pp. 21-24
    [43]
    Maxwell, D.P., Nickels, R., McIntosh, L. Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence Plant J., 29 (2002),pp. 269-279
    [44]
    Millar, A.H., Mittova, V., Kiddle, G. et al. Control of ascorbate synthesis by respiration and its implications for stress responses Plant Physiol., 133 (2003),pp. 443-447
    [45]
    Møller, I.M. Plant mitochondria and oxidative stress, Electron transport, NADPH turnover, and metabolism of reactive oxygen species Annu. Rev. Plant Physiol. Plant Mol. Biol., 52 (2001),pp. 561-591
    [46]
    Murai, K., Takumi, S., Koga, H. et al. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat Plant J., 29 (2002),pp. 169-181
    [47]
    Neill, S., Desikan, R., Hancock, J. Hydrogen peroxide signaling Curr. Opin. Plant Biol., 5 (2002),pp. 388-395
    [48]
    Nie, X., Durnin, D.C., Igamberdiev, A.U. et al. Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression Planta, 223 (2006),pp. 542-549
    [49]
    Nie, X., Hill, R.D. Mitochondrial respiration and hemoglobin gene expression in barley aleuroe tissue Plant Physiol., 114 (1997),pp. 835-840
    [50]
    Nott, A., Jung, H.S., Koussevitzky, S. et al. Plast-to-nucleus retrograde signaling Annu. Rev. Plant Bio., 57 (2006),pp. 39-59
    [51]
    Oldroyd, G.E.D., Downie, J.A. Nuclear calcium changes at the core of symbiosis signaling Curr. Oppin. Plant Biol., 9 (2006),pp. 351-357
    [52]
    Ordog, S.H., Higgins, V.J., Vanlerberghe, G.C. Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response Plant Physiol., 129 (2002),pp. 1858-1865
    [53]
    Poyton, R.O., McEwen, J.E. Crosstalk between nuclear and mitochondrial genomes Annu. Rev. Biochem., 65 (1996),pp. 563-607
    [54]
    Rhoads, D.M., Subbaiah, C.C. Mitochondrial retrograde regulation in plants Mitochondrion, 7 (2007),pp. 177-194
    [55]
    Rodermel, S. Pathways of plastid-to-nucleus signaling Trends Plant Sci., 6 (2001),pp. 447-471
    [56]
    Romeis, T., Ludwig, A.A., Martin, R. et al. Calcium dependent protein kinases play an essential role in a plant defense response EMBO J., 20 (2001),pp. 5556-5567
    [57]
    Schnable, P.S., Wise, R.P. The molecular basis of cytoplasmic male sterility and fertility restoration Trends Plant Sci., 3 (1998),pp. 175-180
    [58]
    Sedbrook, J.C., Kronebusch, P.J., Borisy, G.G. et al. Plant Physiol., 111 (1996),pp. 243-257
    [59]
    Sekito, T., Thomson, J., Butow, R.A. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p Mol. Biol. Cell, 11 (2000),pp. 2103-2115
    [60]
    Sieber, P., Gheyselinck, J., Gross-Hardt, R. et al. Dev. Biol., 273 (2004),pp. 321-334
    [61]
    Subbaiah, C.C., Bush, D.S., Sachs, M.M. Plant Physiol., 118 (1998),pp. 759-771
    [62]
    Surpin, M., Larkin, R.M., Chory, J. Signal transduction between the chloroplast and the nucleus Plant Cell, 14 (2002),pp. S327-S338
    [63]
    Takahashi, Y., Berberich, T., Miyazaki, A. et al. Spermine signalling in tobacco: activation of mitogen activated protein kinases by spermine is mediated through mitochondrial dysfunction Plant J., 36 (2003),pp. 820-829
    [64]
    Takahashi, Y., Berberich, T., Yamashita, K. et al. Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf- and flower-senescence Plant Mol. Biol., 54 (2004),pp. 613-622
    [65]
    Taylor, N.L., Day, D.A., Millar, A.H. Environmental stess causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase J. Biol. Chem., 277 (2002),pp. 42663-42668
    [66]
    Teixeira, R.T., Farbos, I., Glimelius, K. Plant J., 42 (2005),pp. 731-742
    [67]
    Torres, M.A., Dangl, J.L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development Curr. Opin. Plant Biol., 8 (2005),pp. 397-403
    [68]
    Tron, A.E., Bertoncini, C.W., Chan, R.L. et al. Redox regulation of plant homeodomain transcription factors J. Biol. Chem., 277 (2002),pp. 34800-34807
    [69]
    Tsuji, H., Nakazono, M., Saisho, D. et al. Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in expression of the alternative oxidase 1a gene FEBS Lett., 471 (2000),pp. 201-204
    [70]
    Uehara, Y., Takahashi, Y., Berberich, T. et al. Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway Plant Mol. Biol., 59 (2005),pp. 435-448
    [71]
    Unseld, M., Marienfeld, J.R., Brandt, P. et al. Nature Genet., 15 (1997),pp. 57-61
    [72]
    Vanlerberghe, G.C., Robson, C.A., Yip, J.Y.H. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death Plant Physiol., 129 (2002),pp. 1829-1842
    [73]
    Vranová, E., Inze, D., van Breusegem, F. Signal transduction during oxidative stress J. Exp. Bot., 53 (2002),pp. 1227-1236
    [74]
    Wendehenne, D., Durner, J., Klessig, D.F. Nitric oxide: a new player in plant signaling and defense responses Curr. Opin. Plant Biol., 7 (2004),pp. 449-455
    [75]
    Yang, J.H., Zhang, M.F. Molecular genetics of mitochondrial respiratory/ATP-related genes in relation to cytoplasmic male-sterility of higher plants Genes Genome Genomics, 1 (2007),pp. 21-26
    [76]
    Yang, J.H., Zhang, M.F., Yu, J.Q. J. Integrat. Plant Biol., 49 (2007),pp. 672-677
    [77]
    Yang, J.H., Zhang, M.F., Yu, J.Q. et al. Identification of alloplasmic cytoplasmic male-sterility line of leaf mustard synthesized by intra-specific hybridization Plant Sci., 168 (2005),pp. 865-871
    [78]
    Yoda, H., Yamaguchi, Y., Sano, H. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants Plant Physiol., 132 (2003),pp. 1973-1981
    [79]
    Zarkovic, J., Anderson, S.L., Rhoads, D.M. Plant Mol. Biol., 57 (2005),pp. 871-888
    [80]
    Zhang, D.P. Signaling to the nucleus with a loaded GUN Science, 316 (2007),pp. 700-701
    [81]
    Zhang, M.F., Chen, L.P., Wang, B.L. et al. J Hort. Sci. Biotechnol., 78 (2003),pp. 837-841
    [82]
    Zubko, M.K., Zubko, E., Ryban, A.V. et al. Plant J., 25 (2001),pp. 627-639
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return