[1] |
Smith, OS, Smith, et al. Measurement of genetic diversity among maize hybrids–a comparison of isozymic, RFLP, pedigree, and heterosis data Maydica, 37 (1992),pp. 53-60
|
[2] |
Smith, JSC, Chin, et al. Theor Appl Genet, 95 (1997),pp. 163-173
|
[3] |
Doebley, J, Wendel, et al. The origin of corn belt maize: the isozyme evidence Econ Bot, 42 (1988),pp. 120-131
|
[4] |
Rafalski, JA, Vogel, et al.
|
[5] |
Lu, H, Bernardo, et al. Molecular marker diversity among current and historical maize inbreds Theor Appl Genet, 103 (2001),pp. 613-617
|
[6] |
Pejic, I, Ajmore-Marsan, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs Theor Appl Genet, 97 (1998),pp. 1248-1255
|
[7] |
Senior, ML, Murphy, et al. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system Crop Sci, 38 (1998),pp. 1088-1098
|
[8] |
Liu, K, Goodman, et al. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites Genetics, 165 (2003),pp. 2117-2128
|
[9] |
Vigouroux, Y, Mitchell, et al. An analysis of genetic diversity across the maize genome using microsatellites Genetics, 169 (2005),pp. 1617-1630
|
[10] |
Reif, JC, Warburton, et al. Grouping of accessions of Mexican races of maize revisited with SSR markers Theor Appl Genet, 113 (2006),pp. 177-185
|
[11] |
Li, Y, Du, et al. Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers Maydica, 47 (2002),pp. 93-101
|
[12] |
Li, XH, Fu, et al. Genetic variation of inbred lines of maize detected by SSR markers Sci Agric Sin, 33 (2000),pp. 1-9
|
[13] |
Yuan, LX, Fu, et al. Comparison of genetic diversity in maize inbreds based on RFLP, SSR, AFLP and RAPD markers Acta Genet Sin, 27 (2000),pp. 725-733
|
[14] |
Corder, EH, Saunders, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease Nat Genet, 7 (1994),pp. 180-184
|
[15] |
Kerem, B, Rommens, et al. Identification of the cystic fibrosis gene: genetic analysis Science, 245 (1989),pp. 1073-1080
|
[16] |
Thornsberry, JM, Goodman, et al. Nat Genet, 28 (2001),pp. 286-289
|
[17] |
Andersen, JR, Schrag, et al. Theor Appl Genet, 111 (2005),pp. 206-217
|
[18] |
Camus-Kulandaivelu, L, Veyrieras, et al. Genetics, 172 (2006),pp. 2449-2463
|
[19] |
Flint-Garcia, SA, Thornsberry, et al. Structure of linkage disequilibrium in plants Annu Rev Plant Biol, 54 (2003),pp. 357-374
|
[20] |
Stich, B, Melchinger, et al. Linkage disequilibrium in European elite maize germplasm investigated with SSRs Theor Appl Genet, 111 (2005),pp. 723-730
|
[21] |
Remington, DL, Thornsberry, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome Proc Natl Acad Sci USA, 98 (2001),pp. 11479-11484
|
[22] |
Saghai-Maroof, MA, Soliman, et al. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics Proc Natl Acad Sci USA, 81 (1984),pp. 8014-8018
|
[23] |
Falush, D, Stephens, et al. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies Genetics, 164 (2003),pp. 1567-1587
|
[24] |
Pritchard, JK, Stephens, et al. Inference of population structure using multilocus genotype data Genetics, 155 (2000),pp. 945-959
|
[25] |
Kullback, S, Leibler, et al. On information and sufficiency Ann Math Stat, 22 (1951),pp. 79-86
|
[26] |
Garris, AJ, Tai, et al. Genetics, 169 (2005),pp. 1631-1638
|
[27] |
Li, Y Development and germplasm base of maize hybrids in China Maydica, 43 (1998),pp. 259-269
|
[28] |
Kraakman, ATW, Niks, et al. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars Genetics, 168 (2004),pp. 435-446
|