[1] |
Cohen-Kupiec, R, Chet, et al. The molecular biology of chitin digestion Curr Opin Biotech, 9 (1998),pp. 270-277
|
[2] |
Kasprzewska, A Plant chitinases-regulation and function Cell Mol Biol Lett, 8 (2003),pp. 809-824
|
[3] |
van Aalten, DMF, Komander, et al. Structural insights into the catalytic mechanism of a family 18 exo-chitinase Proc Natl Acad Sci USA, 98 (2001),pp. 8979-8984
|
[4] |
Brameld, KA, The role of enzyme distortion in the single displacement mechanism of family 19 chitinases Proc Natl Acad Sci USA, 95 (1998),pp. 4276-4281
|
[5] |
Ouyang, SW, Zhao, et al. The structure and function, classification and evolution of plant chitinases Chinese Bulletin of Botany, 18 (2001),pp. 418-426
|
[6] |
Arie, M, Hikichi, et al. Characterisation of basic chitinase which is secreted by cultured pumpkin cells Plant Physiol, 110 (2000),pp. 232-239
|
[7] |
Han, F, Li, et al. Progress on plant chitinases Biotech, 11 (2001),pp. 25-28
|
[8] |
Jiang, HB, Zhang, et al. Advances in the research of chitinase Shangdong Sci, 13 (2000),pp. 41-45
|
[9] |
Neuhaus, JM, Fritig, et al. A revised nomenclature for chitinase genes Plant Mol Bio Rep, 14 (1996),pp. 102-104
|
[10] |
Collinge, DB, Kragh, et al. Plant chitinases Plant J, 3 (1993),pp. 31-40
|
[11] |
Regalado, AP, Pinheiro, et al. Planta, 210 (2000),pp. 543-550
|
[12] |
Hamel, F, Bellemare, et al. Biochim Biophys Acta, 1263 (1995),pp. 212-220
|
[13] |
Hanfrey, C, Fife, et al. Plant Mol Biol, 30 (1996),pp. 597-609
|
[14] |
Bishop, JG, Dean, et al. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution Proc Natl Acad Sci USA, 97 (2000),pp. 5322-5327
|
[15] |
Krishnaveni, S, Liang, et al. Purification and partial characterization of chitinases from sorghum seeds Plant Sci, 144 (1999),pp. 1-7
|
[16] |
Goormachtig, S, Lievens, et al. Plant Cell, 10 (1998),pp. 905-915
|
[17] |
Cullimore, JV, Ranjeva, et al. Perception of lipochitooligosaccharidic Nod factors in legumes Trends Plant Sci, 6 (2001),pp. 24-30
|
[18] |
van der Holst, PPG, Schlaman, et al. Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development Curr Opin Struct Biol, 11 (2001),pp. 608-616
|
[19] |
van Hengel, A, Guzzo, et al. Plant Physiol, 117 (1998),pp. 43-53
|
[20] |
Passarinho, PA, van Hengel, et al. Planta, 212 (2001),pp. 556-567
|
[21] |
Yeh, S, Moffat, et al. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals Plant Physiol, 124 (2000),pp. 1251-1263
|
[22] |
Fan, CM, Li, et al. Acta Microbiologica Sinica, 45 (2005),pp. 561-566
|
[23] |
Juncher, AS, Willenbrock, et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria Protein Sci, 12 (2003),pp. 1652-1662
|
[24] |
Rahfeld, JU, Rucknagel, et al. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases: amino acid sequence and recombinant production of parvulin FEBS Lett, 352 (1994),pp. 180-184
|
[25] |
Didierjean, L, Frendo, et al. Heavy-metal-responsive genes in maize: identification and comparison of their expression upon various forms of abiotic stress Planta, 199 (1996),pp. 1-8
|
[26] |
Elfstrand, M, Feddermann, et al. Ectopic expression of the mycorrhiza-specific chitinase gene Mtchit 3-3 in Medicago truncatula root-organ cultures stimulates spore germination of glomalean fungi New Phytol, 167 (2005),pp. 557-570
|
[27] |
Busam, G, Kassemeyer, et al. Plant Physiol, 115 (1997),pp. 1029-1038
|
[28] |
Melchers, LS, Apotheker-de Groot, et al. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity Plant J, 5 (1994),pp. 469-480
|
[29] |
Tiffin, P Comparative evolutionary histories of chitinase genes in the genus zea and family poaceae Genetics, 167 (2004),pp. 1331-1340
|
[30] |
Elliott, GO
|
[31] |
Yamagami, T, Tsutsumi, et al. Cloning, sequencing, and expression of the tulip bulb chitinase-1 cDNA Biosci Biotechnol Biochem, 64 (2000),pp. 1394-1401
|
[32] |
Yamagami, T, Ishiguro, et al. Complete amino acid sequences of chitinase-1 and -2 from bulbs of genus Tulipa Biosci Biotechnol Biochem, 62 (1998),pp. 1253-1257
|
[33] |
Rasmussen, U, Bojsen, et al. Plant Mol Biol, 20 (1992),pp. 277-287
|
[34] |
Bishop, JG, Dean, et al. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution Proc Natl Acad Sci USA, 97 (2000),pp. 5322-5327
|
[35] |
Zhang, D, Hrmova, et al. Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls Plant Mol Biol, 54 (2004),pp. 353-372
|
[36] |
Margis-Pinheiro, M, Metz-Boutigue, et al. Plant Physiol, 111 (1996),pp. 1135-1144
|
[37] |
Kellmann, JW, Kleinow, et al. Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants Plant Mol Biol, 30 (1996),pp. 351-358
|
[38] |
Heitz, T, Segond, et al. Molecular characterization of a novel tobacco pathogenesis-related (PR) protein: a new plant chitinase/lysozyme Mol Gen Genet, 245 (1994),pp. 246-254
|
[39] |
Melchers, LS, Apotheker-de Groot, et al. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity Plant J, 5 (1994),pp. 469-480
|
[40] |
Rapoport, TA Transport of proteins across the endoplasmic reticulum membrane Science, 258 (1992),pp. 931-936
|
[41] |
von Heijne, G The signal peptide J Membr Biol, 115 (1990),pp. 195-201
|
[42] |
Paetzel, M, Dalbey, et al. Crystal structure of a bacterial signal peptides in complex with a beta-lactam inhibitor Nature, 396 (1998),pp. 186-190
|
[43] |
Akita, M, Sasaki, et al. J Biol Chem, 265 (1990),pp. 8162-8169
|
[44] |
Henrissat, B A classification of glycosyl hydrolases based on amino acid sequence similarities Biochem J, 280 (1991),pp. 309-316
|
[45] |
Henrissat, B, Bairoch, et al. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities Bichem J, 293 (1993),pp. 781-788
|
[46] |
Fukamizo, T Chitinolytic enzymes: catalysis, substrate binding, and their application Curr Protein Peptide Sci, 1 (2000),pp. 105-124
|
[47] |
Sahai, AS, Manocha, et al. Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction FEMS Microbiol Rev, 11 (1993),pp. 317-338
|
[48] |
Hamel, F, Boivin, et al. Structural and evolutionary relationships among chitinases of flowering plants J Mol Evol, 44 (1997),pp. 614-624
|
[49] |
Lee, SA, Wormsley, et al. Yeast, 20 (2003),pp. 595-610
|
[50] |
Beintema, JJ Structural features of plant chitinases and chitin-binding proteins FEBS Lett, 350 (1994),pp. 159-163
|
[51] |
Samac, DA, Hironaka, et al. Plant Physiol, 93 (1990),pp. 907-914
|
[52] |
Collinge, DB, Kragh, et al. Plant chitinase Plant J, 3 (1993),pp. 31-40
|
[53] |
Melchers, LS, Groot, et al. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity Plant J, 5 (1994),pp. 469-480
|
[54] |
Li, J, Liu, et al. A novel cotton gene encoding a new class of chitinase Acta Botanica Sinica, 45 (2003),pp. 1489-1496
|
[1] | Yidan Ouyang, Xu Li, Qifa Zhang. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 385-393. doi: 10.1016/j.jgg.2022.02.022 |
[2] | Kangli Sun, Minghui Huang, Wubei Zong, Dongdong Xiao, Chen Lei, Yanqiu Luo, Yingang Song, Shengting Li, Yu Hao, Wanni Luo, Bingqun Xu, Xiaotong Guo, Guangliang Wei, Letian Chen, Yao-Guang Liu, Jingxin Guo. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits[J]. Journal of Genetics and Genomics, 2022, 49(5): 437-447. doi: 10.1016/j.jgg.2022.02.018 |
[3] | Penglin Zhan, Shuaipeng Ma, Zhili Xiao, Fangping Li, Xin Wei, Shaojun Lin, Xiaoling Wang, Zhe Ji, Yu Fu, Jiahao Pan, Mi Zhou, Yue Liu, Zengyuan Chang, Lu Li, Suhong Bu, Zupei Liu, Haitao Zhu, Guifu Liu, Guiquan Zhang, Shaokui Wang. Natural variations in grain length 10 (GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. doi: 10.1016/j.jgg.2022.01.008 |
[4] | Libin Chen, Chonghui Ji, Degui Zhou, Xin Gou, Jianian Tang, Yongjie Jiang, Jingluan Han, Yao-Guang Liu, Letian Chen, Yongyao Xie. OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 481-491. doi: 10.1016/j.jgg.2022.03.003 |
[5] | Weiping Yang, Pengkun Xu, Juncheng Zhang, Shuo Zhang, Zhenwei Li, Ke Yang, Xinyuan Chang, Yibo Li. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. doi: 10.1016/j.jgg.2022.02.002 |
[6] | Hanwen Li, Jinqiang Nian, Shuang Fang, Meng Guo, Xiahe Huang, Fengxia Zhang, Qing Wang, Jian Zhang, Jiaoteng Bai, Guojun Dong, Peiyong Xin, Xianzhi Xie, Fan Chen, Guodong Wang, Yingchun Wang, Qian Qian, Jianru Zuo, Jinfang Chu, Xiaohui Ma. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 469-480. doi: 10.1016/j.jgg.2022.02.006 |
[7] | Jinyue Ge, Junrui Wang, Hongbo Pang, Fei Li, Danjing Lou, Weiya Fan, Ziran Liu, Jiaqi Li, Danting Li, Baoxuan Nong, Zongqiong Zhang, Yanyan Wang, Jingfen Huang, Meng Xing, Yamin Nie, Xiaorong Xiao, Fan Zhang, Wensheng Wang, Jianlong Xu, Sung Ryul Kim, Ajay Kohli, Guoyou Ye, Weihua Qiao, Qingwen Yang, Xiaoming Zheng. Genome-wide selection and introgression of Chinese rice varieties during breeding[J]. Journal of Genetics and Genomics, 2022, 49(5): 492-501. doi: 10.1016/j.jgg.2022.02.025 |
[8] | Xinkai Zhou, Tao Zhu, Wen Fang, Ranran Yu, Zhaohui He, Dijun Chen. Systematic annotation of conservation states provides insights into regulatory regions in rice[J]. Journal of Genetics and Genomics, 2022, 49(12): 1127-1137. doi: 10.1016/j.jgg.2022.04.003 |
[9] | Guangyu Liu, Wanxia Jiang, Lei Tian, Yongcai Fu, Lubin Tan, Zuofeng Zhu, Chuanqing Sun, Fengxia Liu. Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 458-468. doi: 10.1016/j.jgg.2022.01.007 |
[10] | Jinhua Xiao, Xianqin Wei, Yi Zhou, Zhaozhe Xin, Yunheng Miao, Hongxia Hou, Jiaxing Li, Dan Zhao, Jing Liu, Rui Chen, Liming Niu, Guangchang Ma, Wenquan Zhen, Shunmin He, Jianxia Wang, Xunfan Wei, Weihao Dou, Zhuoxiao Sui, Haikuan Zhang, Shilai Xing, Miao Shi, Dawei Huang. Genomes of 12 fig wasps provide insights into the adaptation of pollinators to fig syconia[J]. Journal of Genetics and Genomics, 2021, 48(3): 225-236. doi: 10.1016/j.jgg.2021.02.010 |
[11] | Xiaodong Xin, Xingwang Li, Junkai Zhu, Xiaobin Liu, Zhenghu Chu, Jiali Shen, Changyin Wu. OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice[J]. Journal of Genetics and Genomics, 2021, 48(6): 485-496. doi: 10.1016/j.jgg.2021.04.011 |
[12] | Zhiyao Lv, Rui Dai, Haoran Xu, Yongxin Liu, Bo Bai, Ying Meng, Haiyan Li, Xiaofeng Cao, Yang Bai, Xianwei Song, Jingying Zhang. The rice histone methylation regulates hub species of the root microbiota[J]. Journal of Genetics and Genomics, 2021, 48(9): 836-843. doi: 10.1016/j.jgg.2021.06.005 |
[13] | Aili Qu, Yan Xu, Xinxing Yu, Qi Si, Xuwen Xu, Changhao Liu, Liuyi Yang, Yueping Zheng, Mengmeng Zhang, Shuqun Zhang, Juan Xu. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice[J]. Journal of Genetics and Genomics, 2021, 48(8): 695-705. doi: 10.1016/j.jgg.2021.04.013 |
[14] | Hua Li, Bin Hu, Wei Wang, Zhihua Zhang, Yan Liang, Xiaokai Gao, Peng Li, Yongqiang Liu, Lianhe Zhang, Chengcai Chu. Identification of microRNAs in rice root in response to nitrate and ammonium[J]. Journal of Genetics and Genomics, 2016, 43(11): 651-661. doi: 10.1016/j.jgg.2015.12.002 |
[15] | Ting Li, Bo Liu, Chih Ying Chen, Bing Yang. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice[J]. Journal of Genetics and Genomics, 2016, 43(5): 297-305. doi: 10.1016/j.jgg.2016.03.005 |
[16] | Caijuan Tian, Zhangli Zuo, Jin-Long Qiu. Identification and Characterization of ABA-Responsive MicroRNAs in Rice[J]. Journal of Genetics and Genomics, 2015, 42(7): 393-402. doi: 10.1016/j.jgg.2015.04.008 |
[17] | Yang Liu, Jun Fang, Fan Xu, Jinfang Chu, Cunyu Yan, Michael R. Schläppi, Youping Wang, Chengcai Chu. Expression Patterns of ABA and GA Metabolism Genes and Hormone Levels during Rice Seed Development and Imbibition: A Comparison of Dormant and Non-Dormant Rice Cultivars[J]. Journal of Genetics and Genomics, 2014, 41(6): 327-338. doi: 10.1016/j.jgg.2014.04.004 |
[18] | Hongning Tong, Chengcai Chu. Brassinosteroid Signaling and Application in Rice[J]. Journal of Genetics and Genomics, 2012, 39(1): 3-9. doi: 10.1016/j.jgg.2011.12.001 |
[19] | Wei Hao, Hong-Xuan Lin. Toward understanding genetic mechanisms of complex traits in rice[J]. Journal of Genetics and Genomics, 2010, 37(10): 653-666. doi: 10.1016/S1673-8527(09)60084-9 |
[20] | Longzhi Han, Yongli Qiao, Sanyuan Zhang, Yuanyuan Zhang, Guilan Cao, Jonghwan Kim, Kyuseong Lee, Heejong Koh. Identification of Quantitative Trait Loci for Cold Response of Seedling Vigor Traits in Rice[J]. Journal of Genetics and Genomics, 2007, 34(3): 239-246. doi: 10.1016/S1673-8527(07)60025-3 |