Baker, R.F., Braun, D.M., 2007. tie-dyed1 functions non-cell autonomously to control carbohydrate accumulation in maize leaves. Plant Physiol. 144, 867-878.
|
Baker, R.F., Braun, D.M., 2008. Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves. Plant Physiol. 146, 1085-1097.
|
Baker, R.F., Leach, K.A., Boyer, N.R., Swyers, M.J., Benitez-Alfonso, Y., Skopelitis, T., Luo, A., Sylvester, A., Jackson, D., Braun, D.M., 2016. Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading. Plant Physiol. 172, 1876-1898.
|
Bezrutczyk, M., Hartwig, T., Horschman, M., Char, S.N., Yang, J., Yang, B., Frommer, W.B., Sosso, D., 2018. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 218, 594-603.
|
Bezrutczyk, M., Zollner, N.R., Kruse, C.P.S., Hartwig, T., Lautwein, T., Kohrer, K., Frommer, W.B., Kim, J.Y., 2021. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 33, 531-547.
|
Braun, D.M., 2022. Phloem loading and unloading of sucrose: what a long, strange trip from source to sink. Annu. Rev. Plant Biol. 73, 553-584.
|
Braun, D.M., Ma, Y., Inada, N., Muszynski, M.G., Baker, R.F., 2006. tie-dyed1 regulates carbohydrate accumulation in maize leaves. Plant Physiol. 142, 1511-1522.
|
Braun, D.M., Slewinski, T.L., 2009. Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol. 149, 71-81.
|
Braun, D.M., Wang, L., Ruan, Y.L., 2014. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 65, 1713-1735.
|
Chen, Y., Miller, A.J., Qiu, B., Huang, Y., Zhang, K., Fan, G., Liu, X., 2024. The role of sugar transporters in the battle for carbon between plants and pathogens. Plant Biotechnol. J. 22, 2844-2858.
|
Collakova, E., DellaPenna, D., 2003. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol. 131, 632-642.
|
de Laet, C., Dionisi-Vici, C., Leonard, J.V., McKiernan, P., Mitchell, G., Monti, L., de Baulny, H.O., Pintos-Morell, G., Spiekerkotter, U., 2013. Recommendations for the management of tyrosinaemia type 1. Orphanet. J. Rare Dis. 8, 8.
|
Dinges, J.R., Colleoni, C., James, M.G., Myers, A.M., 2003. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15, 666-680.
|
Dixon, D.P., Edwards, R., 2006. Enzymes of tyrosine catabolism in Arabidopsis thaliana. Plant Sci. 171, 360-366.
|
Furbank, R.T., Kelly, S., 2021. Finding the C4 sweet spot: cellular compartmentation of carbohydrate metabolism in C4 photosynthesis. J. Exp. Bot. 72, 6018-6026.
|
Garner, D.M.G., Mure, C.M., Yerramsetty, P., Berry, J.O., 2016. Kranz anatomy and the C4 pathway, In eLS, John Wiley & Sons, Ltd (Ed.).
|
Grompe, M., 2001. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin. Liver Dis. 21, 563-571.
|
Grompe, M., al-Dhalimy, M., 1993. Mutations of the fumarylacetoacetate hydrolase gene in four patients with tyrosinemia, type I. Hum. Mutat. 2, 85-93.
|
Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., Yang, C.J., York, A.M., Xue, W., Xu, G., et al., 2018. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Curr. Biol. 28, 3005-3015.
|
Han, C., Ren, C., Zhi, T., Zhou, Z., Liu, Y., Chen, F., Peng, W., Xie, D., 2013. Disruption of fumarylacetoacetate hydrolase causes spontaneous cell death under short-day conditions in Arabidopsis. Plant Physiol. 162, 1956-1964.
|
Hu, C., Huang, L., Chen, Y., Liu, J., Wang, Z., Gao, B., Zhu, Q., Ren, C., 2021. Fumarylacetoacetate hydrolase is required for fertility in rice. Planta 253, 122.
|
Huang, C., Chen, Q., Xu, G., Xu, D., Tian, J., Tian, F., 2016. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. J. Integr. Plant Biol. 58, 81-90.
|
Huang, C., Sun, H., Xu, D., Chen, Q., Liang, Y., Wang, X., Xu, G., Tian, J., Wang, C., Li, D., et al., 2018. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl. Acad. Sci. U. S. A. 115, E334-e341.
|
Huerta-Cepas, J., Serra, F., Bork, P., 2016. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635-1638.
|
Julius, B.T., Leach, K.A., Tran, T.M., Mertz, R.A., Braun, D.M., 2017. Sugar transporters in plants: new insights and discoveries. Plant Cell Physiol. 58, 1442-1460.
|
Julius, B.T., McCubbin, T.J., Mertz, R.A., Baert, N., Knoblauch, J., Grant, D.G., Conner, K., Bihmidine, S., Chomet, P., Wagner, R., et al., 2021. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. Plant Cell 33, 3348-3366.
|
Julius, B.T., Slewinski, T.L., Baker, R.F., Tzin, V., Zhou, S., Bihmidine, S., Jander, G., Braun, D.M., 2018. Maize Carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function. J. Exp. Bot. 69, 3917-3931.
|
Langdale, J.A., Nelson, T., 1991. Spatial regulation of photosynthetic development in C4 plants. Trends Genet. 7, 191-196.
|
Leach, K.A., Tran, T.M., Slewinski, T.L., Meeley, R.B., Braun, D.M., 2017. Sucrose transporter2 contributes to maize growth, development, and crop yield. J. Integr. Plant Biol. 59, 390-408.
|
Liang, Y., Liu, Q., Wang, X., Huang, C., Xu, G., Hey, S., Lin, H.Y., Li, C., Xu, D., Wu, L., et al., 2019. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol. 221, 2335-2347.
|
Lindblad, B., Lindstedt, S., Steen, G., 1977. On the enzymic defects in hereditary tyrosinemia. Proc. Natl. Acad. Sci. U. S. A. 74, 4641-4645.
|
Lu, X., Liu, J., Ren, W., Yang, Q., Chai, Z., Chen, R., Wang, L., Zhao, J., Lang, Z., Wang, H., et al., 2018. Gene-indexed mutations in maize. Mol. Plant 11, 496-504.
|
Lunn, J.E., Furbank, R.T., 1999. Tansley Review No. 105 Sucrose biosynthesis in C4 plants. New Phytol. 143, 221-237.
|
Ma, Y., Baker, R.F., Magallanes-Lundback, M., DellaPenna, D., Braun, D.M., 2008. Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves. Planta 227, 527-538.
|
Ma, Y., Slewinski, T.L., Baker, R.F., Braun, D.M., 2009. Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning. Plant Physiol. 149, 181-194.
|
Macias, I., Lain, A., Bernardo-Seisdedos, G., Gil, D., Gonzalez, E., Falcon-Perez, J.M., Millet, O., 2019. Hereditary tyrosinemia type I-associated mutations in fumarylacetoacetate hydrolase reduce the enzyme stability and increase its aggregation rate. J. Biol. Chem. 294, 13051-13060.
|
Pircher, H., Straganz, G.D., Ehehalt, D., Morrow, G., Tanguay, R.M., Jansen-Durr, P., 2011. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase. J. Biol. Chem. 286, 36500-36508.
|
Provencher, L.M., Miao, L., Sinha, N., Lucas, W.J., 2001. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13, 1127-1141.
|
Qin, Y., Xiao, Z., Zhao, H., Wang, J., Wang, Y., Qiu, F., 2022. Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize, J. Integr. Plant Biol. 64, 1755-1769.
|
Ren, R., Jiang, X., Zheng, G., Zhao, Y., Li, J., Zhang, X., Zhao, X., 2025. ZmADT2 regulates maize kernel development via the auxin signaling pathway. Crop J. 13, 181-191.
|
Rhoades, M.M., Carvalho, A., 1944. The function and structure of the parenchyma sheath plastids of the maize leaf. Bull. Torrey Bot. Club 71, 335-346.
|
Russin, W.A., Evert, R.F., Vanderveer, P.J., Sharkey, T.D., Briggs, S.P., 1996. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell 8, 645-658.
|
Sattler, S. E., Cahoon, E. B., Coughlan, S. J., DellaPenna, D. 2003. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol., 132, 2184-2195.
|
Shang, S., He, Y., Zhao, R., Li, H., Fang, Y., Hu, Q., Fan, Y., Wang, Y., Zhou, X., Wang, P., Xing, X., Zhang, C. J. 2025. Fumarylacetoacetate hydrolase targeted by a Fusarium graminearum effector positively regulates wheat FHB resistance. Nat Commun., 16, 5582.
|
Shannon L. 2012. The genetic architecture of maize domestication and rangeexpansion. PhD thesis, The University of Wisconsin-Madison, Madison, WI, U. S. A.
|
Singh A., Compart J., Al-Rawi SA., Mahto H., Ahmad A.M., Fettke J., 2022. LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes. Plant J. 111, 819-835.
|
Slewinski, T. L., Braun, D. M. 2010a. The psychedelic genes of maize redundantly promote carbohydrate export from leaves. Genetics, 185, 221-232.
|
Slewinski, T.L., Garg, A., Johal, G.S., Braun, D.M., 2010b. Maize SUT1 functions in phloem loading. Plant Signal. Behav. 5, 687-690.
|
Slewinski, T.L., Baker, R.F., Stubert, A., and Braun, D.M. 2012. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiol. 160, 1540-1550.
|
Slewinski, T.L., Meeley, R., Braun, D.M., 2009. Sucrose transporter1 functions in phloem loading in maize leaves. J. Exp. Bot. 60, 881-892.
|
Tran, T.M., McCubbin, T.J., Bihmidine, S., Julius, B.T., Baker, R.F., Schauflinger, M., Weil, C., Springer, N., Chomet, P., Wagner, R., et al., 2019. Maize Carbohydrate partitioning defective33 encodes an MCTP protein and functions in sucrose export from leaves. Mol. Plant 12, 1278-1293.
|
Weiss, A.K.H., Loeffler, J.R., Liedl, K.R., Gstach, H., Jansen-Durr, P., 2018. The fumarylacetoacetate hydrolase (FAH) superfamily of enzymes: multifunctional enzymes from microbes to mitochondria. Biochem. Soc. Trans. 46, 295-309.
|
Weiss, A.K.H., Naschberger, A., Cappuccio, E., Metzger, C., Mottes, L., Holzknecht, M., von Velsen, J., Bowler, M.W., Rupp, B., Jansen-Durr, P., 2020. Structural and functional comparison of fumarylacetoacetate domain containing protein 1 in human and mouse. Biosci. Rep. 40, BSR20194431.
|
Yandeau-Nelson, M.D., Laurens, L., Shi, Z., Xia, H., Smith, A.M., Guiltinan, M.J., 2011. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol. 156, 479-490.
|
Zhao, Y., Xu, W., Zhang, Y., Sun, S., Wang, L., Zhong, S., Zhao, X., Liu, B., 2021. PPR647 protein is required for chloroplast RNA editing, splicing and chloroplast development in maize. Int. J. Mol. Sci. 22, 11162.
|