9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Maize Chlorotic Leaf Spot1 encodes a fumarylacetoacetate hydrolase essential for carbohydrate partitioning

doi: 10.1016/j.jgg.2025.10.002
Funds:

This research was supported by the National Key Research and Development Program of China (2022YFD1201503), the National Natural Science Foundation of China (32025027, 32330077, 32588101 and 32401810), Pinduoduo-China Agricultural University Research Fund (PC2023A01003), New Cornerstone Science Foundation through the XPLORER PRIZE, and the Chinese Universities Scientific Fund (2025TC147 and 2022TC138).

  • Received Date: 2025-06-24
  • Accepted Date: 2025-10-03
  • Rev Recd Date: 2025-09-30
  • Available Online: 2025-10-10
  • Carbohydrate partitioning from photosynthetic sources to non-photosynthetic sinks is essential for plant development and crop yield. Using a maize-teosinte BC2S3 population, we identify Chlorotic Leaf Spot1 (CLS1), a fumarylacetoacetate hydrolase (FAH) in the tyrosine degradation pathway that plays an essential role in carbohydrate partitioning in maize. CLS1 localizes to the plasma membrane, cytoplasm, and nucleus. Allelic tests and sequence analysis reveal that the teosinte parent CIMMYT8759 carries a weak allele of CLS1, likely due to rare amino acid substitutions at residues 175 and 355. Loss-of-function mutants of CLS1 develop chlorotic leaf spots accompanied by carbohydrate hyperaccumulation, reduced photosynthetic efficiency, chloroplast damage, and impaired transient starch conversion. Critically, cls1 mutants exhibit ectopic callose accumulation and aberrant plasmodesmata ultrastructure at the mesophyll-bundle sheath and bundle sheath-vascular parenchyma interfaces. This defect causes starch granule and soluble sugar accumulation in chlorotic leaf tissues, indicating a disruption of the symplastic transport pathway. Collectively, our results uncover an important role for FAH in plant development and identify CLS1 as a key regulator of symplastic carbohydrate partitioning.
  • loading
  • Baker, R.F., Braun, D.M., 2007. tie-dyed1 functions non-cell autonomously to control carbohydrate accumulation in maize leaves. Plant Physiol. 144, 867-878.
    Baker, R.F., Braun, D.M., 2008. Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves. Plant Physiol. 146, 1085-1097.
    Baker, R.F., Leach, K.A., Boyer, N.R., Swyers, M.J., Benitez-Alfonso, Y., Skopelitis, T., Luo, A., Sylvester, A., Jackson, D., Braun, D.M., 2016. Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading. Plant Physiol. 172, 1876-1898.
    Bezrutczyk, M., Hartwig, T., Horschman, M., Char, S.N., Yang, J., Yang, B., Frommer, W.B., Sosso, D., 2018. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 218, 594-603.
    Bezrutczyk, M., Zollner, N.R., Kruse, C.P.S., Hartwig, T., Lautwein, T., Kohrer, K., Frommer, W.B., Kim, J.Y., 2021. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 33, 531-547.
    Braun, D.M., 2022. Phloem loading and unloading of sucrose: what a long, strange trip from source to sink. Annu. Rev. Plant Biol. 73, 553-584.
    Braun, D.M., Ma, Y., Inada, N., Muszynski, M.G., Baker, R.F., 2006. tie-dyed1 regulates carbohydrate accumulation in maize leaves. Plant Physiol. 142, 1511-1522.
    Braun, D.M., Slewinski, T.L., 2009. Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol. 149, 71-81.
    Braun, D.M., Wang, L., Ruan, Y.L., 2014. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 65, 1713-1735.
    Chen, Y., Miller, A.J., Qiu, B., Huang, Y., Zhang, K., Fan, G., Liu, X., 2024. The role of sugar transporters in the battle for carbon between plants and pathogens. Plant Biotechnol. J. 22, 2844-2858.
    Collakova, E., DellaPenna, D., 2003. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol. 131, 632-642.
    de Laet, C., Dionisi-Vici, C., Leonard, J.V., McKiernan, P., Mitchell, G., Monti, L., de Baulny, H.O., Pintos-Morell, G., Spiekerkotter, U., 2013. Recommendations for the management of tyrosinaemia type 1. Orphanet. J. Rare Dis. 8, 8.
    Dinges, J.R., Colleoni, C., James, M.G., Myers, A.M., 2003. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15, 666-680.
    Dixon, D.P., Edwards, R., 2006. Enzymes of tyrosine catabolism in Arabidopsis thaliana. Plant Sci. 171, 360-366.
    Furbank, R.T., Kelly, S., 2021. Finding the C4 sweet spot: cellular compartmentation of carbohydrate metabolism in C4 photosynthesis. J. Exp. Bot. 72, 6018-6026.
    Garner, D.M.G., Mure, C.M., Yerramsetty, P., Berry, J.O., 2016. Kranz anatomy and the C4 pathway, In eLS, John Wiley & Sons, Ltd (Ed.).
    Grompe, M., 2001. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin. Liver Dis. 21, 563-571.
    Grompe, M., al-Dhalimy, M., 1993. Mutations of the fumarylacetoacetate hydrolase gene in four patients with tyrosinemia, type I. Hum. Mutat. 2, 85-93.
    Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., Yang, C.J., York, A.M., Xue, W., Xu, G., et al., 2018. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Curr. Biol. 28, 3005-3015.
    Han, C., Ren, C., Zhi, T., Zhou, Z., Liu, Y., Chen, F., Peng, W., Xie, D., 2013. Disruption of fumarylacetoacetate hydrolase causes spontaneous cell death under short-day conditions in Arabidopsis. Plant Physiol. 162, 1956-1964.
    Hu, C., Huang, L., Chen, Y., Liu, J., Wang, Z., Gao, B., Zhu, Q., Ren, C., 2021. Fumarylacetoacetate hydrolase is required for fertility in rice. Planta 253, 122.
    Huang, C., Chen, Q., Xu, G., Xu, D., Tian, J., Tian, F., 2016. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. J. Integr. Plant Biol. 58, 81-90.
    Huang, C., Sun, H., Xu, D., Chen, Q., Liang, Y., Wang, X., Xu, G., Tian, J., Wang, C., Li, D., et al., 2018. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl. Acad. Sci. U. S. A. 115, E334-e341.
    Huerta-Cepas, J., Serra, F., Bork, P., 2016. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635-1638.
    Julius, B.T., Leach, K.A., Tran, T.M., Mertz, R.A., Braun, D.M., 2017. Sugar transporters in plants: new insights and discoveries. Plant Cell Physiol. 58, 1442-1460.
    Julius, B.T., McCubbin, T.J., Mertz, R.A., Baert, N., Knoblauch, J., Grant, D.G., Conner, K., Bihmidine, S., Chomet, P., Wagner, R., et al., 2021. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning. Plant Cell 33, 3348-3366.
    Julius, B.T., Slewinski, T.L., Baker, R.F., Tzin, V., Zhou, S., Bihmidine, S., Jander, G., Braun, D.M., 2018. Maize Carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function. J. Exp. Bot. 69, 3917-3931.
    Langdale, J.A., Nelson, T., 1991. Spatial regulation of photosynthetic development in C4 plants. Trends Genet. 7, 191-196.
    Leach, K.A., Tran, T.M., Slewinski, T.L., Meeley, R.B., Braun, D.M., 2017. Sucrose transporter2 contributes to maize growth, development, and crop yield. J. Integr. Plant Biol. 59, 390-408.
    Liang, Y., Liu, Q., Wang, X., Huang, C., Xu, G., Hey, S., Lin, H.Y., Li, C., Xu, D., Wu, L., et al., 2019. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol. 221, 2335-2347.
    Lindblad, B., Lindstedt, S., Steen, G., 1977. On the enzymic defects in hereditary tyrosinemia. Proc. Natl. Acad. Sci. U. S. A. 74, 4641-4645.
    Lu, X., Liu, J., Ren, W., Yang, Q., Chai, Z., Chen, R., Wang, L., Zhao, J., Lang, Z., Wang, H., et al., 2018. Gene-indexed mutations in maize. Mol. Plant 11, 496-504.
    Lunn, J.E., Furbank, R.T., 1999. Tansley Review No. 105 Sucrose biosynthesis in C4 plants. New Phytol. 143, 221-237.
    Ma, Y., Baker, R.F., Magallanes-Lundback, M., DellaPenna, D., Braun, D.M., 2008. Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves. Planta 227, 527-538.
    Ma, Y., Slewinski, T.L., Baker, R.F., Braun, D.M., 2009. Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning. Plant Physiol. 149, 181-194.
    Macias, I., Lain, A., Bernardo-Seisdedos, G., Gil, D., Gonzalez, E., Falcon-Perez, J.M., Millet, O., 2019. Hereditary tyrosinemia type I-associated mutations in fumarylacetoacetate hydrolase reduce the enzyme stability and increase its aggregation rate. J. Biol. Chem. 294, 13051-13060.
    Pircher, H., Straganz, G.D., Ehehalt, D., Morrow, G., Tanguay, R.M., Jansen-Durr, P., 2011. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase. J. Biol. Chem. 286, 36500-36508.
    Provencher, L.M., Miao, L., Sinha, N., Lucas, W.J., 2001. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13, 1127-1141.
    Qin, Y., Xiao, Z., Zhao, H., Wang, J., Wang, Y., Qiu, F., 2022. Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize, J. Integr. Plant Biol. 64, 1755-1769.
    Ren, R., Jiang, X., Zheng, G., Zhao, Y., Li, J., Zhang, X., Zhao, X., 2025. ZmADT2 regulates maize kernel development via the auxin signaling pathway. Crop J. 13, 181-191.
    Rhoades, M.M., Carvalho, A., 1944. The function and structure of the parenchyma sheath plastids of the maize leaf. Bull. Torrey Bot. Club 71, 335-346.
    Russin, W.A., Evert, R.F., Vanderveer, P.J., Sharkey, T.D., Briggs, S.P., 1996. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell 8, 645-658.
    Sattler, S. E., Cahoon, E. B., Coughlan, S. J., DellaPenna, D. 2003. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol., 132, 2184-2195.
    Shang, S., He, Y., Zhao, R., Li, H., Fang, Y., Hu, Q., Fan, Y., Wang, Y., Zhou, X., Wang, P., Xing, X., Zhang, C. J. 2025. Fumarylacetoacetate hydrolase targeted by a Fusarium graminearum effector positively regulates wheat FHB resistance. Nat Commun., 16, 5582.
    Shannon L. 2012. The genetic architecture of maize domestication and rangeexpansion. PhD thesis, The University of Wisconsin-Madison, Madison, WI, U. S. A.
    Singh A., Compart J., Al-Rawi SA., Mahto H., Ahmad A.M., Fettke J., 2022. LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes. Plant J. 111, 819-835.
    Slewinski, T. L., Braun, D. M. 2010a. The psychedelic genes of maize redundantly promote carbohydrate export from leaves. Genetics, 185, 221-232.
    Slewinski, T.L., Garg, A., Johal, G.S., Braun, D.M., 2010b. Maize SUT1 functions in phloem loading. Plant Signal. Behav. 5, 687-690.
    Slewinski, T.L., Baker, R.F., Stubert, A., and Braun, D.M. 2012. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiol. 160, 1540-1550.
    Slewinski, T.L., Meeley, R., Braun, D.M., 2009. Sucrose transporter1 functions in phloem loading in maize leaves. J. Exp. Bot. 60, 881-892.
    Tran, T.M., McCubbin, T.J., Bihmidine, S., Julius, B.T., Baker, R.F., Schauflinger, M., Weil, C., Springer, N., Chomet, P., Wagner, R., et al., 2019. Maize Carbohydrate partitioning defective33 encodes an MCTP protein and functions in sucrose export from leaves. Mol. Plant 12, 1278-1293.
    Weiss, A.K.H., Loeffler, J.R., Liedl, K.R., Gstach, H., Jansen-Durr, P., 2018. The fumarylacetoacetate hydrolase (FAH) superfamily of enzymes: multifunctional enzymes from microbes to mitochondria. Biochem. Soc. Trans. 46, 295-309.
    Weiss, A.K.H., Naschberger, A., Cappuccio, E., Metzger, C., Mottes, L., Holzknecht, M., von Velsen, J., Bowler, M.W., Rupp, B., Jansen-Durr, P., 2020. Structural and functional comparison of fumarylacetoacetate domain containing protein 1 in human and mouse. Biosci. Rep. 40, BSR20194431.
    Yandeau-Nelson, M.D., Laurens, L., Shi, Z., Xia, H., Smith, A.M., Guiltinan, M.J., 2011. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol. 156, 479-490.
    Zhao, Y., Xu, W., Zhang, Y., Sun, S., Wang, L., Zhong, S., Zhao, X., Liu, B., 2021. PPR647 protein is required for chloroplast RNA editing, splicing and chloroplast development in maize. Int. J. Mol. Sci. 22, 11162.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return