Arrese, E.L., Soulages, J.L., 2010. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207-225.
|
Ashok, M., Turner, C.,Wilson, T.G., 1998. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. U. S. A. 95, 2761-2766.
|
Charles, J.P., Iwema, T., Epa, V.C., Takaki, K., Rynes, J., Jindra, M., 2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U. S. A. 108, 21128-21133.
|
Chen, L., Zhang, P., Fan, Y., Lu, Q., Li, Q., Yan, J., Muehlbauer, G.J., Schnable, P.S., Dai, M., Li, L., 2018. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 217, 1292-1306.
|
Chen, L.L., 2016. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17, 205-211.
|
Danan, M., Schwartz, S., Edelheit, S., Sorek, R., 2012. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res. 40, 3131-3142.
|
Gan, H., Feng, T., Wu, Y., Liu, C., Xia, Q., Cheng, T., 2017. Identification of circular RNA in the Bombyx mori silk gland. Insect. Biochem. Mol. Biol. 89, 97-106.
|
Gao, L., Chang, S., Xia, W., Wang, X., Zhang, C., Cheng, L., Liu, X., Chen, L., Shi, Q., Huang, J., et al., 2020. Circular RNAs from BOULE play conserved roles in protection against stress-induced fertility decline. Sci. Adv. 6, eabb7426.
|
Gao, M., Liu, Y., Wang, Y., Zhang, X., Dong, S., Liu, X., 2019. Newly identified APN splice isoforms suggest novel splicing mechanisms may underlie circRNA circularization in moth. FEBS Open Bio. 9, 1521-1535.
|
Gao, Y., Yang, L., Chen, Y., Liu, P., Zhou, Y., Chen, X.,Gu, J., 2023. Aal-circRNA-407 regulates ovarian development of Aedes albopictus, a major arbovirus vector, via the miR-9a-5p/Foxl axis. PLoS Pathog. 19, e1011374.
|
Guo, W., Wu, Z., Yang, L., Cai, Z., Zhao, L., Zhou, S., 2019. Juvenile hormone-dependent Kazal-type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. FASEB J. 33, 917-927.
|
Guo, X., Kang, L., 2024. Phenotypic plasticity in locusts: trade-off between migration and reproduction. Annu. Rev. Entomol. 70, 23-44.
|
Hanan, M., Soreq, H., Kadener, S., 2017. CircRNAs in the brain. RNA Biol. 14, 1028-1034.
|
Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., Kjems, J., 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388.
|
He, J., Chen, Q., Wei, Y., Jiang, F., Yang, M., Hao, S., Guo, X., Chen, D., Kang, L., 2016. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc. Natl. Acad. Sci. U. S. A. 113, 584-589.
|
He, J., Zhu, Y.n., Wang, B., Yang, P., Guo, W., Liang, B., Jiang, F., Wang, H., Wei, Y., Kang, L., 2022. piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy. Cell Rep. 39, 110593.
|
Hou, Y., Wang, X.L., Saha, T.T., Roy, S., Zhao, B., Raikhel, A.S., Zou, Z., 2015. Temporal coordination of carbohydrate metabolism during mosquito reproduction. PLoS Genet. 11, e1005309.
|
Huang, A., Zheng, H., Wu, Z., Chen, M., Huang, Y., 2020. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10, 3503-3517.
|
Jia, R., Xiao, M.S., Li, Z., Shan, G., Huang, C., 2019. Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov. 5, 45.
|
Jiang, F., Yang, M., Guo, W., Wang, X., Kang, L., 2012. Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria. PLoS ONE 7, e40532.
|
Jindra, M., Belles, X., Shinoda, T., 2015. Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 11, 39-46.
|
Jindra, M., McKinstry, W.J., Nebl, T., Bittova, L., Ren, B., Shaw, J., Phan, T., Lu, L., Low, J.K.K., Mackay, J.P., et al., 2021. Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation. J. Biol. Chem. 297, e101387.
|
Jindra, M., Palli, S.R., Riddiford, L.M., 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181-204.
|
Kim, K., Albishi, N.M., Palli, S.R., 2021. Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Kruppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J. Proteom. 242, 104257.
|
Kramer, M.C., Liang, D., Tatomer, D.C., Gold, B., March, Z.M., Cherry, S.,Wilusz, J.E., 2015. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168-2182.
|
Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., Kjems, J., 2019. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675-691.
|
Leyria, J., 2024. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol. Cell Endocrinol. 587, 112211.
|
Li, M., Mead, E.A.,Zhu, J., 2011. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. U. S. A. 108, 638-643.
|
Li, S., Yu, X., Feng, Q., 2019. Fat body biology in the last decade. Annu. Rev. Entomol. 64, 315-333.
|
Li, T., Chen, B., Yang, P.C., Wang, D.P., Du, B.Z., Kang, L., 2020. Long non-coding RNA derived from lncRNA- mRNA co-expression networks modulates the locust phase change. Genom. Proteom. Bioinform. 18, 664-678.
|
Li, W., Liu, M., Zhuang, Z., Gao, L., Song, J., Zhou, S., 2024a. The miRNA-mRNA modules enhance juvenile hormone biosynthesis for insect vitellogenesis and egg production. Insect Sci. 32, 1227-1240.
|
Li, X., Mank, J.E., Ban, L., 2024b. The grasshopper genome reveals long-term gene content conservation of the X Chromosome and temporal variation in X Chromosome evolution. Genome Res. 34, 997-1007.
|
Liang, D.,Wilusz, J.E., 2014. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233-2247.
|
Liu, C.-X., Chen, L.-L., 2022. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016-2034.
|
Liu, P.C., Peng, H.J., Zhu, J.S., 2015. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proc. Natl. Acad. Sci. U. S. A. 112, E1871-E1879.
|
Liu, S., Guo, X.Y., Shang, Q.J.,Gao, P., 2023. The biogenesis, biological functions and modification of Circular RNAs. Exp. Mol. Pathol. 131, 104861.
|
Liu, X., Li, J., Sun, Y., Liang, X., Zhang, R., Zhao, X., Zhang, M., Zhang, J., 2022. A nuclear receptor HR4 is essential for the formation of epidermal cuticle in the migratory locust, Locusta migratoria. Insect. Biochem. Mol. Biol. 143, 103740.
|
Luo, M., Li, D., Wang, Z., Guo, W., Kang, L., Zhou, S., 2017. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. J. Biol. Chem. 292, 8823-8834.
|
Luo, W., Liu, S., Zhang, W., Yang, L., Huang, J., Zhou, S., Feng, Q., Palli, S.R., Wang, J., Roth, S., et al., 2021. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc. Natl. Acad. Sci. U. S. A. 118, e2104461118.
|
Mehta, S.L., Dempsey, R.J.,Vemuganti, R., 2020. Role of circular RNAs in brain development and CNS diseases. Prog. Neurobiol. 186, 101746.
|
Nemeth, K., Bayraktar, R., Ferracin, M., Calin, G.A., 2024. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211-232.
|
Pamudurti, N.R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., et al., 2017. Translation of circRNAs. Mol. Cell 66, 9-21.
|
Patop, I.L., Wust, S., Kadener, S., 2019. Past, present, and future of circRNAs. EMBO J. 38, e100836.
|
Pek, J.W., Osman, I., Tay, M.L., Zheng, R.T., 2015. Stable intronic sequence RNAs have possible regulatory roles in Drosophila melanogaster. J. Cell. Biol. 211, 243-251.
|
Piwecka, M., Glazar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Cerda Jara, C.A., Fenske, P., et al., 2017. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam852.
|
Qu, Z., Bendena, W.G., Nong, W., Siggens, K.W., Noriega, F.G., Kai, Z.P., Zang, Y.Y., Koon, A.C., Chan, H.Y.E., Chan, T.F., et al., 2017. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc. Biol. Sci. 284, e20171827.
|
Raikhel, A.S., Brown, M.R., Belles, X. 2005. Hormonal control of reproductive processes, in: Gilbert, L.I. (Eds.), Comprehensive Molecular Insect Science. Elsevier, Amsterdam, pp. 433-491.
|
Raikhel, A.S., Lea, A.O., 1990. Juvenile hormone controls previtellogenic proliferation of ribosomal RNA in the mosquito fat body. Gen. Comp. Endocrinol. 77, 423-434.
|
Ren, L., Jiang, Q., Mo, L., Tan, L., Dong, Q., Meng, L., Yang, N., Li, G., 2022. Mechanisms of circular RNA degradation. Commun. Biol. 5, 1355.
|
Roy, S., Saha, T.T., Zou, Z., Raikhel, A.S., 2018. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489-511.
|
Schreiner, S., Didio, A., Hung, L.-H., Bindereif, A., 2020. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res. 48, 12326-12335.
|
Sethi, S., Lin, H.-H., Shepherd, A.K., Volkan, P.C., Su, C.-Y.,Wang, J.W., 2019. Social context enhances hormonal modulation of pheromone detection in Drosophila. Curr. Biol. 29, 3887-3898.e3884.
|
Song, J., Li, W., Zhao, H., Gao, L., Fan, Y., Zhou, S., 2018. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Kruppel-homolog 1. Development 145, dev170670.
|
Song, J., Li, W., Zhao, H.,Zhou, S., 2019. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect. Biochem. Mol. Biol. 106, 39-46.
|
Song, J., Wu, Z., Wang, Z., Deng, S., Zhou, S., 2014. Kruppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect. Biochem. Mol. Biol. 52, 94-101.
|
Song, J., Zhou, S., 2020. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell. Mol. Life Sci. 77, 1893-1909.
|
Tan, K.E., Lim, Y.Y., 2021. Viruses join the circular RNA world. FEBS J. 288, 4488-4502.
|
Tay, M.L., Pek, J.W., 2017. Maternally inherited stable intronic sequence RNA triggers a self-reinforcing feedback loop during development. Curr. Biol. 27, 1062-1067.
|
Tholken, C., Thamm, M., Erbacher, C.,Lechner, M., 2019. Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera). BMC Genom. 20, 88.
|
Truesdell, S.S., Mortensen, R.D., Seo, M., Schroeder, J.C., Lee, J.H., LeTonqueze, O.,Vasudevan, S., 2012. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci. Rep. 2, 842.
|
Truman, J.W., 2019. The evolution of insect metamorphosis. Curr. Biol. 29, R1252-R1268.
|
Truman, J.W., Riddiford, L.M., 2019. The evolution of insect metamorphosis: a developmental and endocrine view. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190070.
|
Vicens, Q.,Westhof, E., 2014. Biogenesis of circular RNAs. Cell 159, 13-14.
|
Wang, H., Jiang, F., Liu, X., Liu, Q., Fu, Y., Li, R., Hou, L., Zhang, J., He, J., Kang, L., 2022. Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts. EMBO Rep. 23, e50851.
|
Wang, J., Saha, T.T., Zhang, Y., Zhang, C., Raikhel, A.S., 2017a. Juvenile hormone and its receptor methoprene-tolerant promote ribosomal biogenesis and vitellogenesis in the Aedes aegypti mosquito. J. Biol. Chem. 292, 10306-10315.
|
Wang, X., Fang, X., Yang, P., Jiang, X., Jiang, F., Zhao, D., Li, B., Cui, F., Wei, J., Ma, C., et al., 2014. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5, 2957.
|
Wang, X., Hou, Y., Saha, T.T., Pei, G., Raikhel, A.S., Zou, Z., 2017b. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proc. Natl. Acad. Sci. U. S. A. 114, E2709-e2718.
|
Wang, X., Kang, L., 2014. Molecular mechanisms of phase change in locusts. Annu. Rev. Entomol. 59, 225-244.
|
Weigelt, C.M., Sehgal, R., Tain, L.S., Cheng, J., Esser, J., Pahl, A., Dieterich, C., Gronke, S., Partridge, L., 2020. An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol. Cell 79, 268-279.
|
Westholm, J.O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S.E., Graveley, B.R., Lai, E.C., 2014. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966-1980.
|
Wilson, T.G., Fabian, J., 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev. Biol. 118, 190-201.
|
Wu, N., Yuan, Z., Du, K.Y., Fang, L., Lyu, J., Zhang, C., He, A., Eshaghi, E., Zeng, K., Ma, J., et al., 2019. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 26, 2758-2773.
|
Wu, Z., Yang, L., He, Q., Zhou, S., 2021. Regulatory mechanisms of vitellogenesis in insects. Front. Cell Dev. Biol. 8, 593613.
|
Wyatt, G.R., Davey, K.G. 1996. Cellular and molecular actions of juvenile hormone .2. Roles of juvenile hormone in adult insects, in: Evans, P.D. (Eds.), Adv Insect Physiol, pp. 1-155.
|
Yang, M., Du, B., Xu, L., Wang, H., Wang, Y., Lin, K., He, G., Kang, L., 2023. Glutamate-GABA imbalance mediated by miR-8-5p and its STTM regulates phase-related behavior of locusts. Proc. Natl. Acad. Sci. U. S. A. 120, e2215660120.
|
Yang, M., Wei, Y., Jiang, F., Wang, Y., Guo, X., He, J., Kang, L., 2014. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genet. 10, e1004206.
|
Zhang, S., Shen, S., Yang, Z., Kong, X., Liu, F., Zhen, Z., 2020a. Coding and non-coding RNAs: molecular basis of forest-insect outbreaks. Front. Cell Dev. Biol. 8, 369.
|
Zhang, S.X., Glantz, E.H., Miner, L.E., Rogulja, D., Crickmore, M.A., 2021. Hormonal control of motivational circuitry orchestrates the transition to sexuality in Drosophila. Sci. Adv. 7, eabg6926.
|
Zhang, X., Li, S., Liu, S., 2022a. Juvenile hormone studies in Drosophila melanogaster. Front. Physiol. 12, 785320.
|
Zhang, X., Xu, Y., Chen, B., Kang, L., 2020b. Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet. 16, e1008771.
|
Zhang, X., Zhu, Y.N., Chen, B., Kang, L., 2022b. A Gypsy element contributes to the nuclear retention and transcriptional regulation of the resident lncRNA in locusts. RNA Biol. 19, 206-220.
|
Zhang, X.O., Wang, H.B., Zhang, Y., Lu, X., Chen, L.L.,Yang, L., 2014. Complementary sequence-mediated exon circularization. Cell 159, 134-147.
|
Zhao, L., Guo, W., Jiang, F., He, J., Liu, H., Song, J., Yu, D., Kang, L., 2021. Phase-related differences in egg production of the migratory locust regulated by differential oosorption through microRNA-34 targeting activin beta. PLoS Genet. 17, e1009174.
|
Zhu, Y.N., He, J., Wang, J., Guo, W., Liu, H., Song, Z., Kang, L., 2024. Parental experiences orchestrate locust egg hatching synchrony by regulating nuclear export of precursor miRNA. Nat. Commun. 15, 4328.
|