9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

circRNAs derived from a nuclear hormone receptor act differentially on insect metamorphosis and reproduction

doi: 10.1016/j.jgg.2025.10.001
Funds:

This work was supported by the National Natural Science Foundation of China (32070489 and U22A20482) and the National Key R&

D Program of China (2022YFD1400500).

  • Received Date: 2025-06-11
  • Accepted Date: 2025-10-02
  • Rev Recd Date: 2025-09-29
  • Available Online: 2025-10-10
  • Insects are the most diverse group on earth, partially owing to their metamorphosis and strong fecundity. Circular RNAs (circRNAs) are stable molecules implicated in a broad range of biological processes. However, the regulatory roles of circRNAs in insect metamorphosis and reproduction are unclear. Methoprene-tolerant (Met) is the nuclear receptor of juvenile hormone (JH) that plays dual roles of inhibiting precocious metamorphosis and promoting reproduction. Here, we report that locust Met generates two circRNAs, circMet1 and circMet2, respectively. While circMet1 is highly expressed in the cuticle of late final instar, circMet2 is more abundant in the corpora allata, brain, and fat body of early vitellogenic adults. Interestingly, circMet2 is generated by complementary pairing of Penelope-like remnants across the introns of Met. Moreover, circMet2 functions as a miRNA sponge of four species-specific miRNAs that downregulate Met translation. siRNA-mediated knockdown of circMet1 causes the delay of metamorphosis and retarded vitellogenesis. Loss of circMet2 results in significantly decreased vitellogenin synthesis, along with blocked ovarian growth. These results reveal the differential roles of circMet1 and circMet2 in modulating insect metamorphosis and female reproduction. This study advances our understanding of how circRNAs derived from a single gene exert distinct roles in insect life history.
  • loading
  • Arrese, E.L., Soulages, J.L., 2010. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207-225.
    Ashok, M., Turner, C.,Wilson, T.G., 1998. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. U. S. A. 95, 2761-2766.
    Charles, J.P., Iwema, T., Epa, V.C., Takaki, K., Rynes, J., Jindra, M., 2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U. S. A. 108, 21128-21133.
    Chen, L., Zhang, P., Fan, Y., Lu, Q., Li, Q., Yan, J., Muehlbauer, G.J., Schnable, P.S., Dai, M., Li, L., 2018. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 217, 1292-1306.
    Chen, L.L., 2016. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17, 205-211.
    Danan, M., Schwartz, S., Edelheit, S., Sorek, R., 2012. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res. 40, 3131-3142.
    Gan, H., Feng, T., Wu, Y., Liu, C., Xia, Q., Cheng, T., 2017. Identification of circular RNA in the Bombyx mori silk gland. Insect. Biochem. Mol. Biol. 89, 97-106.
    Gao, L., Chang, S., Xia, W., Wang, X., Zhang, C., Cheng, L., Liu, X., Chen, L., Shi, Q., Huang, J., et al., 2020. Circular RNAs from BOULE play conserved roles in protection against stress-induced fertility decline. Sci. Adv. 6, eabb7426.
    Gao, M., Liu, Y., Wang, Y., Zhang, X., Dong, S., Liu, X., 2019. Newly identified APN splice isoforms suggest novel splicing mechanisms may underlie circRNA circularization in moth. FEBS Open Bio. 9, 1521-1535.
    Gao, Y., Yang, L., Chen, Y., Liu, P., Zhou, Y., Chen, X.,Gu, J., 2023. Aal-circRNA-407 regulates ovarian development of Aedes albopictus, a major arbovirus vector, via the miR-9a-5p/Foxl axis. PLoS Pathog. 19, e1011374.
    Guo, W., Wu, Z., Yang, L., Cai, Z., Zhao, L., Zhou, S., 2019. Juvenile hormone-dependent Kazal-type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. FASEB J. 33, 917-927.
    Guo, X., Kang, L., 2024. Phenotypic plasticity in locusts: trade-off between migration and reproduction. Annu. Rev. Entomol. 70, 23-44.
    Hanan, M., Soreq, H., Kadener, S., 2017. CircRNAs in the brain. RNA Biol. 14, 1028-1034.
    Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., Kjems, J., 2013. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384-388.
    He, J., Chen, Q., Wei, Y., Jiang, F., Yang, M., Hao, S., Guo, X., Chen, D., Kang, L., 2016. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc. Natl. Acad. Sci. U. S. A. 113, 584-589.
    He, J., Zhu, Y.n., Wang, B., Yang, P., Guo, W., Liang, B., Jiang, F., Wang, H., Wei, Y., Kang, L., 2022. piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy. Cell Rep. 39, 110593.
    Hou, Y., Wang, X.L., Saha, T.T., Roy, S., Zhao, B., Raikhel, A.S., Zou, Z., 2015. Temporal coordination of carbohydrate metabolism during mosquito reproduction. PLoS Genet. 11, e1005309.
    Huang, A., Zheng, H., Wu, Z., Chen, M., Huang, Y., 2020. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10, 3503-3517.
    Jia, R., Xiao, M.S., Li, Z., Shan, G., Huang, C., 2019. Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov. 5, 45.
    Jiang, F., Yang, M., Guo, W., Wang, X., Kang, L., 2012. Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria. PLoS ONE 7, e40532.
    Jindra, M., Belles, X., Shinoda, T., 2015. Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 11, 39-46.
    Jindra, M., McKinstry, W.J., Nebl, T., Bittova, L., Ren, B., Shaw, J., Phan, T., Lu, L., Low, J.K.K., Mackay, J.P., et al., 2021. Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation. J. Biol. Chem. 297, e101387.
    Jindra, M., Palli, S.R., Riddiford, L.M., 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181-204.
    Kim, K., Albishi, N.M., Palli, S.R., 2021. Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Kruppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J. Proteom. 242, 104257.
    Kramer, M.C., Liang, D., Tatomer, D.C., Gold, B., March, Z.M., Cherry, S.,Wilusz, J.E., 2015. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168-2182.
    Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., Kjems, J., 2019. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675-691.
    Leyria, J., 2024. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol. Cell Endocrinol. 587, 112211.
    Li, M., Mead, E.A.,Zhu, J., 2011. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. U. S. A. 108, 638-643.
    Li, S., Yu, X., Feng, Q., 2019. Fat body biology in the last decade. Annu. Rev. Entomol. 64, 315-333.
    Li, T., Chen, B., Yang, P.C., Wang, D.P., Du, B.Z., Kang, L., 2020. Long non-coding RNA derived from lncRNA- mRNA co-expression networks modulates the locust phase change. Genom. Proteom. Bioinform. 18, 664-678.
    Li, W., Liu, M., Zhuang, Z., Gao, L., Song, J., Zhou, S., 2024a. The miRNA-mRNA modules enhance juvenile hormone biosynthesis for insect vitellogenesis and egg production. Insect Sci. 32, 1227-1240.
    Li, X., Mank, J.E., Ban, L., 2024b. The grasshopper genome reveals long-term gene content conservation of the X Chromosome and temporal variation in X Chromosome evolution. Genome Res. 34, 997-1007.
    Liang, D.,Wilusz, J.E., 2014. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233-2247.
    Liu, C.-X., Chen, L.-L., 2022. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016-2034.
    Liu, P.C., Peng, H.J., Zhu, J.S., 2015. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proc. Natl. Acad. Sci. U. S. A. 112, E1871-E1879.
    Liu, S., Guo, X.Y., Shang, Q.J.,Gao, P., 2023. The biogenesis, biological functions and modification of Circular RNAs. Exp. Mol. Pathol. 131, 104861.
    Liu, X., Li, J., Sun, Y., Liang, X., Zhang, R., Zhao, X., Zhang, M., Zhang, J., 2022. A nuclear receptor HR4 is essential for the formation of epidermal cuticle in the migratory locust, Locusta migratoria. Insect. Biochem. Mol. Biol. 143, 103740.
    Luo, M., Li, D., Wang, Z., Guo, W., Kang, L., Zhou, S., 2017. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis. J. Biol. Chem. 292, 8823-8834.
    Luo, W., Liu, S., Zhang, W., Yang, L., Huang, J., Zhou, S., Feng, Q., Palli, S.R., Wang, J., Roth, S., et al., 2021. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc. Natl. Acad. Sci. U. S. A. 118, e2104461118.
    Mehta, S.L., Dempsey, R.J.,Vemuganti, R., 2020. Role of circular RNAs in brain development and CNS diseases. Prog. Neurobiol. 186, 101746.
    Nemeth, K., Bayraktar, R., Ferracin, M., Calin, G.A., 2024. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211-232.
    Pamudurti, N.R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., et al., 2017. Translation of circRNAs. Mol. Cell 66, 9-21.
    Patop, I.L., Wust, S., Kadener, S., 2019. Past, present, and future of circRNAs. EMBO J. 38, e100836.
    Pek, J.W., Osman, I., Tay, M.L., Zheng, R.T., 2015. Stable intronic sequence RNAs have possible regulatory roles in Drosophila melanogaster. J. Cell. Biol. 211, 243-251.
    Piwecka, M., Glazar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Cerda Jara, C.A., Fenske, P., et al., 2017. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam852.
    Qu, Z., Bendena, W.G., Nong, W., Siggens, K.W., Noriega, F.G., Kai, Z.P., Zang, Y.Y., Koon, A.C., Chan, H.Y.E., Chan, T.F., et al., 2017. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc. Biol. Sci. 284, e20171827.
    Raikhel, A.S., Brown, M.R., Belles, X. 2005. Hormonal control of reproductive processes, in: Gilbert, L.I. (Eds.), Comprehensive Molecular Insect Science. Elsevier, Amsterdam, pp. 433-491.
    Raikhel, A.S., Lea, A.O., 1990. Juvenile hormone controls previtellogenic proliferation of ribosomal RNA in the mosquito fat body. Gen. Comp. Endocrinol. 77, 423-434.
    Ren, L., Jiang, Q., Mo, L., Tan, L., Dong, Q., Meng, L., Yang, N., Li, G., 2022. Mechanisms of circular RNA degradation. Commun. Biol. 5, 1355.
    Roy, S., Saha, T.T., Zou, Z., Raikhel, A.S., 2018. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489-511.
    Schreiner, S., Didio, A., Hung, L.-H., Bindereif, A., 2020. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res. 48, 12326-12335.
    Sethi, S., Lin, H.-H., Shepherd, A.K., Volkan, P.C., Su, C.-Y.,Wang, J.W., 2019. Social context enhances hormonal modulation of pheromone detection in Drosophila. Curr. Biol. 29, 3887-3898.e3884.
    Song, J., Li, W., Zhao, H., Gao, L., Fan, Y., Zhou, S., 2018. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Kruppel-homolog 1. Development 145, dev170670.
    Song, J., Li, W., Zhao, H.,Zhou, S., 2019. Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect. Biochem. Mol. Biol. 106, 39-46.
    Song, J., Wu, Z., Wang, Z., Deng, S., Zhou, S., 2014. Kruppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect. Biochem. Mol. Biol. 52, 94-101.
    Song, J., Zhou, S., 2020. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell. Mol. Life Sci. 77, 1893-1909.
    Tan, K.E., Lim, Y.Y., 2021. Viruses join the circular RNA world. FEBS J. 288, 4488-4502.
    Tay, M.L., Pek, J.W., 2017. Maternally inherited stable intronic sequence RNA triggers a self-reinforcing feedback loop during development. Curr. Biol. 27, 1062-1067.
    Tholken, C., Thamm, M., Erbacher, C.,Lechner, M., 2019. Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera). BMC Genom. 20, 88.
    Truesdell, S.S., Mortensen, R.D., Seo, M., Schroeder, J.C., Lee, J.H., LeTonqueze, O.,Vasudevan, S., 2012. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci. Rep. 2, 842.
    Truman, J.W., 2019. The evolution of insect metamorphosis. Curr. Biol. 29, R1252-R1268.
    Truman, J.W., Riddiford, L.M., 2019. The evolution of insect metamorphosis: a developmental and endocrine view. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190070.
    Vicens, Q.,Westhof, E., 2014. Biogenesis of circular RNAs. Cell 159, 13-14.
    Wang, H., Jiang, F., Liu, X., Liu, Q., Fu, Y., Li, R., Hou, L., Zhang, J., He, J., Kang, L., 2022. Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts. EMBO Rep. 23, e50851.
    Wang, J., Saha, T.T., Zhang, Y., Zhang, C., Raikhel, A.S., 2017a. Juvenile hormone and its receptor methoprene-tolerant promote ribosomal biogenesis and vitellogenesis in the Aedes aegypti mosquito. J. Biol. Chem. 292, 10306-10315.
    Wang, X., Fang, X., Yang, P., Jiang, X., Jiang, F., Zhao, D., Li, B., Cui, F., Wei, J., Ma, C., et al., 2014. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5, 2957.
    Wang, X., Hou, Y., Saha, T.T., Pei, G., Raikhel, A.S., Zou, Z., 2017b. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proc. Natl. Acad. Sci. U. S. A. 114, E2709-e2718.
    Wang, X., Kang, L., 2014. Molecular mechanisms of phase change in locusts. Annu. Rev. Entomol. 59, 225-244.
    Weigelt, C.M., Sehgal, R., Tain, L.S., Cheng, J., Esser, J., Pahl, A., Dieterich, C., Gronke, S., Partridge, L., 2020. An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol. Cell 79, 268-279.
    Westholm, J.O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S.E., Graveley, B.R., Lai, E.C., 2014. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966-1980.
    Wilson, T.G., Fabian, J., 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev. Biol. 118, 190-201.
    Wu, N., Yuan, Z., Du, K.Y., Fang, L., Lyu, J., Zhang, C., He, A., Eshaghi, E., Zeng, K., Ma, J., et al., 2019. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 26, 2758-2773.
    Wu, Z., Yang, L., He, Q., Zhou, S., 2021. Regulatory mechanisms of vitellogenesis in insects. Front. Cell Dev. Biol. 8, 593613.
    Wyatt, G.R., Davey, K.G. 1996. Cellular and molecular actions of juvenile hormone .2. Roles of juvenile hormone in adult insects, in: Evans, P.D. (Eds.), Adv Insect Physiol, pp. 1-155.
    Yang, M., Du, B., Xu, L., Wang, H., Wang, Y., Lin, K., He, G., Kang, L., 2023. Glutamate-GABA imbalance mediated by miR-8-5p and its STTM regulates phase-related behavior of locusts. Proc. Natl. Acad. Sci. U. S. A. 120, e2215660120.
    Yang, M., Wei, Y., Jiang, F., Wang, Y., Guo, X., He, J., Kang, L., 2014. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genet. 10, e1004206.
    Zhang, S., Shen, S., Yang, Z., Kong, X., Liu, F., Zhen, Z., 2020a. Coding and non-coding RNAs: molecular basis of forest-insect outbreaks. Front. Cell Dev. Biol. 8, 369.
    Zhang, S.X., Glantz, E.H., Miner, L.E., Rogulja, D., Crickmore, M.A., 2021. Hormonal control of motivational circuitry orchestrates the transition to sexuality in Drosophila. Sci. Adv. 7, eabg6926.
    Zhang, X., Li, S., Liu, S., 2022a. Juvenile hormone studies in Drosophila melanogaster. Front. Physiol. 12, 785320.
    Zhang, X., Xu, Y., Chen, B., Kang, L., 2020b. Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis. PLoS Genet. 16, e1008771.
    Zhang, X., Zhu, Y.N., Chen, B., Kang, L., 2022b. A Gypsy element contributes to the nuclear retention and transcriptional regulation of the resident lncRNA in locusts. RNA Biol. 19, 206-220.
    Zhang, X.O., Wang, H.B., Zhang, Y., Lu, X., Chen, L.L.,Yang, L., 2014. Complementary sequence-mediated exon circularization. Cell 159, 134-147.
    Zhao, L., Guo, W., Jiang, F., He, J., Liu, H., Song, J., Yu, D., Kang, L., 2021. Phase-related differences in egg production of the migratory locust regulated by differential oosorption through microRNA-34 targeting activin beta. PLoS Genet. 17, e1009174.
    Zhu, Y.N., He, J., Wang, J., Guo, W., Liu, H., Song, Z., Kang, L., 2024. Parental experiences orchestrate locust egg hatching synchrony by regulating nuclear export of precursor miRNA. Nat. Commun. 15, 4328.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return