Abdennur, N., Abraham, S., Fudenberg, G., Flyamer, I.M., Galitsyna, A.A., Goloborodko, A., Imakaev, M., Oksuz, B.A., Venev, S.V.,Xiao, Y., 2024. Cooltools: Enabling high-resolution Hi-C analysis in Python. PLoS Comput. Biol. 20, e1012067.
|
Altemose, N., Maslan, A., Smith, O.K., Sundararajan, K., Brown, R.R., Mishra, R., Detweiler, A.M., Neff, N., Miga, K.H., Straight, A.F., et al., 2022. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide. Nat. Methods 19, 711-723.
|
Beagan, J.A.,Phillips-Cremins, J.E., 2020. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8-16.
|
Bonev, B.,Cavalli, G., 2016. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661-678.
|
Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng, Z., Furey, T.S.,Crawford, G.E., 2008. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311-322.
|
Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y.,Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218.
|
Chai, H., Tjong, H., Li, P., Liao, W., Wang, P., Wong, C.H., Ngan, C.Y., Leonard, W.J., Wei, C.-L.,Ruan, Y., 2023. ChIATAC is an efficient strategy for multi-omics mapping of 3D epigenomes from low-cell inputs. Nat. Commun. 14, 213.
|
Chen, Y., Lin, Z.-B., Niu, L.-J., Zhong, J.-Y., Liu, Y.-Z., Hou, C.-H., Luo, F.,Xiao, C.-L., 2022. Falign: An effective alignment tool for long noisy 3C data. bioRxiv, 2022.2010.2030.514399.
|
Clark, S.J., Argelaguet, R., Kapourani, C.-A., Stubbs, T.M., Lee, H.J., Alda-Catalinas, C., Krueger, F., Sanguinetti, G., Kelsey, G., Marioni, J.C., et al., 2018. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781.
|
Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M.,Jacobsen, S.E., 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215-219.
|
Deshpande, A.S., Ulahannan, N., Pendleton, M., Dai, X., Ly, L., Behr, J.M., Schwenk, S., Liao, W., Augello, M.A., Tyer, C., et al., 2022. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488-1499.
|
Dixon, J.R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J.E., Lee, A.Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., et al., 2015. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331-336.
|
Ernst, J.,Kellis, M., 2012. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215-216.
|
Felsenfeld, G.,Groudine, M., 2003. Controlling the double helix. Nature 421, 448-453.
|
Fu, H., Zheng, H., Chen, X., Weirauch, M.T., Muglia, L.J., Wang, L.,Liu, Y., 2023. NOMe-HiC: joint profiling of genetic variant, DNA methylation, chromatin accessibility, and 3D genome in the same DNA molecule. Genome Biol. 24, 50.
|
Fulco, C.P., Nasser, J., Jones, T.R., Munson, G., Bergman, D.T., Subramanian, V., Grossman, S.R., Anyoha, R., Doughty, B.R., Patwardhan, T.A., et al., 2019. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664-1669.
|
Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al., 2009. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58-64.
|
Gao, J., Liu, M., Lu, M., Zheng, Y., Wang, Y., Yang, J., Xue, X., Liu, Y., Tang, F., Wang, S., et al., 2024. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 15, 796-817.
|
Grubert, F., Srivas, R., Spacek, D.V., Kasowski, M., Ruiz-Velasco, M., Sinnott-Armstrong, N., Greenside, P., Narasimha, A., Liu, Q., Geller, B., et al., 2020. Landscape of cohesin-mediated chromatin loops in the human genome. Nature 583, 737-743.
|
Hafner, A.,Boettiger, A., 2023. The spatial organization of transcriptional control. Nat. Rev. Genet. 24, 53-68.
|
Hansen, K.D., Langmead, B.,Irizarry, R.A., 2012. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 13, R83.
|
Hitz, B.C., Lee, J.-W., Jolanki, O., Kagda, M.S., Graham, K., Sud, P., Gabdank, I., Strattan, J.S., Sloan, C.A., Dreszer, T., et al. 2023. The ENCODE Uniform Analysis Pipelines, United States.
|
Hon, G.C., Rajagopal, N., Shen, Y., McCleary, D.F., Yue, F., Dang, M.D.,Ren, B., 2013. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198-1206.
|
Kaul, A., Bhattacharyya, S.,Ay, F., 2020. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc. 15, 991-1012.
|
Kelly, T.K., Liu, Y., Lay, F.D., Liang, G., Berman, B.P.,Jones, P.A., 2012. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497-2506.
|
Kragesteen, B.K., Spielmann, M., Paliou, C., Heinrich, V., Schopflin, R., Esposito, A., Annunziatella, C., Bianco, S., Chiariello, A.M., Jerkovic, I., et al., 2018. Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat. Genet. 50, 1463-1473.
|
Kribelbauer-Swietek, J.F., Pushkarev, O., Gardeux, V., Faltejskova, K., Russeil, J., van Mierlo, G.,Deplancke, B., 2024. Context transcription factors establish cooperative environments and mediate enhancer communication. Nat. Genet. 56, 2199-2212.
|
Kruse, K., Hug, C.B.,Vaquerizas, J.M., 2020. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303.
|
Lai, B., Tang, Q., Jin, W., Hu, G., Wangsa, D., Cui, K., Stanton, B.Z., Ren, G., Ding, Y., Zhao, M., et al., 2018. Trac-looping measures genome structure and chromatin accessibility. Nat. Methods 15, 741-747.
|
Lee, B., Wang, J., Cai, L., Kim, M., Namburi, S., Tjong, H., Feng, Y., Wang, P., Tang, Z., Abbas, A., et al., 2020a. ChIA-PIPE: A fully automated pipeline for comprehensive ChIA-PET data analysis and visualization. Sci. Adv. 6, eaay2078.
|
Lee, I., Razaghi, R., Gilpatrick, T., Molnar, M., Gershman, A., Sadowski, N., Sedlazeck, F.J., Hansen, K.D., Simpson, J.T.,Timp, W., 2020b. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191-1199.
|
Li, T., Jia, L., Cao, Y., Chen, Q.,Li, C., 2018. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol. 19, 54.
|
Li, W., Lu, J., Lu, P., Gao, Y., Bai, Y., Chen, K., Su, X., Li, M., Liu, J.e., Chen, Y., et al., 2023. scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells. Nat. Methods 20, 1493-1505.
|
Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
|
Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.-M., et al., 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322.
|
Liu, T.,Conesa, A., 2025. Profiling the epigenome using long-read sequencing. Nat. Genet. 57, 27-41.
|
Liu, Y., Nanni, L., Sungalee, S., Zufferey, M., Tavernari, D., Mina, M., Ceri, S., Oricchio, E.,Ciriello, G., 2021. Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes. Nat. Commun. 12, 2439.
|
Lu, F., Liu, Y., Jiang, L., Yamaguchi, S.,Zhang, Y., 2014. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103-2119.
|
Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F.,Richmond, T.J., 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260.
|
Lupianez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., et al., 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012-1025.
|
Meuleman, W., Muratov, A., Rynes, E., Halow, J., Lee, K., Bates, D., Diegel, M., Dunn, D., Neri, F., Teodosiadis, A., et al., 2020. Index and biological spectrum of human DNase I hypersensitive sites. Nature 584, 244-251.
|
Misteli, T., 2020. The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell 183, 28-45.
|
Morabito, S., Miyoshi, E., Michael, N., Shahin, S., Martini, A.C., Head, E., Silva, J., Leavy, K., Perez-Rosendahl, M.,Swarup, V., 2021. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. Nat. Genet. 53, 1143-1155.
|
Noack, F., Vangelisti, S., Ditzer, N., Chong, F., Albert, M.,Bonev, B., 2023. Joint epigenome profiling reveals cell-type-specific gene regulatory programmes in human cortical organoids. Nat. Cell Biol. 25, 1873-1883.
|
Nordstrom, K.J.V., Schmidt, F., Gasparoni, N., Salhab, A., Gasparoni, G., Kattler, K., Muller, F., Ebert, P., Costa, I.G., Pfeifer, N., et al., 2019. Unique and assay specific features of NOMe-, ATAC- and DNase I-seq data. Nucleic Acids Res. 47, 10580-10596.
|
Oudelaar, A.M., Davies, J.O.J., Hanssen, L.L.P., Telenius, J.M., Schwessinger, R., Liu, Y., Brown, J.M., Downes, D.J., Chiariello, A.M., Bianco, S., et al., 2018. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744-1751.
|
Oudelaar, A.M.,Higgs, D.R., 2021. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154-168.
|
Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A.,Wysocka, J., 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283.
|
Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F.,Manke, T., 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160-165.
|
Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al., 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
|
Robson, M.I., Ringel, A.R.,Mundlos, S., 2019. Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D. Mol. Cell 74, 1110-1122.
|
Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., et al., 2016. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. 17, 2042-2059.
|
Schoenfelder, S.,Fraser, P., 2019. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437-455.
|
Schones, D.E., Cui, K., Cuddapah, S., Roh, T.-Y., Barski, A., Wang, Z., Wei, G.,Zhao, K., 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887-898.
|
Shipony, Z., Marinov, G.K., Swaffer, M.P., Sinnott-Armstrong, N.A., Skotheim, J.M., Kundaje, A.,Greenleaf, W.J., 2020. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319-327.
|
Symmons, O., Uslu, V.V., Tsujimura, T., Ruf, S., Nassari, S., Schwarzer, W., Ettwiller, L.,Spitz, F., 2014. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390-400.
|
Thurman, R.E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M.T., Haugen, E., Sheffield, N.C., Stergachis, A.B., Wang, H., Vernot, B., et al., 2012. The accessible chromatin landscape of the human genome. Nature 489, 75-82.
|
Vermeulen, C., Allahyar, A., Bouwman, B.A.M., Krijger, P.H.L., Verstegen, M.J.A.M., Geeven, G., Valdes-Quezada, C., Renkens, I., Straver, R., Kloosterman, W.P., et al., 2020. Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. Nat. Protoc. 15, 364-397.
|
Wei, X., Xiang, Y., Peters, D.T., Marius, C., Sun, T., Shan, R., Ou, J., Lin, X., Yue, F., Li, W., et al., 2022. HiCAR is a robust and sensitive method to analyze open-chromatin-associated genome organization. Mol. Cell 82, 1225-1238.e1226.
|
Williams, C.J., Dai, D., Tran, K.A., Monroe, J.G.,Williams, B.P., 2023. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants. Genome Biol. 24, 227.
|
Xie, Y., Ruan, F., Li, Y., Luo, M., Zhang, C., Chen, Z., Xie, Z., Weng, Z., Chen, W., Chen, W., et al., 2024. Spatial chromatin accessibility sequencing resolves high-order spatial interactions of epigenomic markers. Elife 12.
|
Xiong, K.,Ma, J., 2019. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun. 10, 5069.
|
Young, R.A., 2011. Control of the embryonic stem cell state. Cell 144, 940-954.
|
Yu, M., Zemke, N.R., Chen, Z., Juric, I., Hu, R., Raviram, R., Abnousi, A., Fang, R., Zhang, Y., Gorkin, D.U., et al., 2025. Integrative analysis of the 3D genome and epigenome in mouse embryonic tissues. Nat. Struct. Mol. Biol. 32, 479-490.
|
Zhang, G., Li, Y.,Wei, G., 2023. Multi-omic analysis reveals dynamic changes of three-dimensional chromatin architecture during T cell differentiation. Commun. Biol. 6, 773.
|
Zhong, J.-Y., Niu, L., Lin, Z.-B., Bai, X., Chen, Y., Luo, F., Hou, C.,Xiao, C.-L., 2023. High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250.
|