9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Single-molecule chromatin profiling reveals cell type-specific A/B compartment alteration and multi-enhancer transcriptional coordination

doi: 10.1016/j.jgg.2025.09.011
Funds:

We thank all those who generated and freely released the data analyzed in our present study. This work was supported by grants from Key Project Fund of National Natural Science Foundation (No. 82230031), the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China (No. U24A200954), the Key Special Project of ‘Cutting-Edge Biotechnology’ in the National Key Research and Development Program of China (No. 2024YFC3406200), Sanming Project of Medicine in Shenzhen (No. SZSM202411007), Guangdong Basic and Applied Basic Research Foundation Regional Joint Fund Key Program (No. 2023B1515120051), and Shenzhen Bay Laboratory Basic Research (No. SZBK2021080601009) to Chi Wei, and the Youth Fund of the National Natural Science Foundation of China (No. 32300515) to Niu Longjian.

  • Received Date: 2025-05-23
  • Accepted Date: 2025-09-30
  • Rev Recd Date: 2025-09-30
  • Available Online: 2025-10-10
  • In eukaryotic organisms, the three-dimensional organization and epigenomic landscape of chromatin are fundamental to the regulation of gene expression. Previous studies have provided significant insights into CpG methylation, chromatin accessibility, and the dynamics of 3D architecture. However, a systematic delineation of how these epigenomic features regulate transcriptional activity remains limited. In this study, we develop nanoCAM-seq, a single-molecule sequencing technique designed to simultaneously profile higher-order chromatin interactions, chromatin accessibility, and endogenous CpG methylation. This approach provides an integrative view of chromatin features associated with cis-regulatory elements and reveals their coordinated dynamics during transitions of A/B compartments. Single-molecule analyses using nanoCAM-seq further reveal that promoters characterized by low CpG methylation and high chromatin accessibility more frequently interact with multiple enhancers. Collectively, our findings establish nanoCAM-seq as a powerful approach for resolving the coordinated dynamics of chromatin architecture and epigenetic modifications, offering critical insights into the regulatory mechanisms underlying gene expression.
  • loading
  • Abdennur, N., Abraham, S., Fudenberg, G., Flyamer, I.M., Galitsyna, A.A., Goloborodko, A., Imakaev, M., Oksuz, B.A., Venev, S.V.,Xiao, Y., 2024. Cooltools: Enabling high-resolution Hi-C analysis in Python. PLoS Comput. Biol. 20, e1012067.
    Altemose, N., Maslan, A., Smith, O.K., Sundararajan, K., Brown, R.R., Mishra, R., Detweiler, A.M., Neff, N., Miga, K.H., Straight, A.F., et al., 2022. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide. Nat. Methods 19, 711-723.
    Beagan, J.A.,Phillips-Cremins, J.E., 2020. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8-16.
    Bonev, B.,Cavalli, G., 2016. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661-678.
    Boyle, A.P., Davis, S., Shulha, H.P., Meltzer, P., Margulies, E.H., Weng, Z., Furey, T.S.,Crawford, G.E., 2008. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311-322.
    Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y.,Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218.
    Chai, H., Tjong, H., Li, P., Liao, W., Wang, P., Wong, C.H., Ngan, C.Y., Leonard, W.J., Wei, C.-L.,Ruan, Y., 2023. ChIATAC is an efficient strategy for multi-omics mapping of 3D epigenomes from low-cell inputs. Nat. Commun. 14, 213.
    Chen, Y., Lin, Z.-B., Niu, L.-J., Zhong, J.-Y., Liu, Y.-Z., Hou, C.-H., Luo, F.,Xiao, C.-L., 2022. Falign: An effective alignment tool for long noisy 3C data. bioRxiv, 2022.2010.2030.514399.
    Clark, S.J., Argelaguet, R., Kapourani, C.-A., Stubbs, T.M., Lee, H.J., Alda-Catalinas, C., Krueger, F., Sanguinetti, G., Kelsey, G., Marioni, J.C., et al., 2018. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781.
    Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M.,Jacobsen, S.E., 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215-219.
    Deshpande, A.S., Ulahannan, N., Pendleton, M., Dai, X., Ly, L., Behr, J.M., Schwenk, S., Liao, W., Augello, M.A., Tyer, C., et al., 2022. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488-1499.
    Dixon, J.R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J.E., Lee, A.Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., et al., 2015. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331-336.
    Ernst, J.,Kellis, M., 2012. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215-216.
    Felsenfeld, G.,Groudine, M., 2003. Controlling the double helix. Nature 421, 448-453.
    Fu, H., Zheng, H., Chen, X., Weirauch, M.T., Muglia, L.J., Wang, L.,Liu, Y., 2023. NOMe-HiC: joint profiling of genetic variant, DNA methylation, chromatin accessibility, and 3D genome in the same DNA molecule. Genome Biol. 24, 50.
    Fulco, C.P., Nasser, J., Jones, T.R., Munson, G., Bergman, D.T., Subramanian, V., Grossman, S.R., Anyoha, R., Doughty, B.R., Patwardhan, T.A., et al., 2019. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664-1669.
    Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al., 2009. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58-64.
    Gao, J., Liu, M., Lu, M., Zheng, Y., Wang, Y., Yang, J., Xue, X., Liu, Y., Tang, F., Wang, S., et al., 2024. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 15, 796-817.
    Grubert, F., Srivas, R., Spacek, D.V., Kasowski, M., Ruiz-Velasco, M., Sinnott-Armstrong, N., Greenside, P., Narasimha, A., Liu, Q., Geller, B., et al., 2020. Landscape of cohesin-mediated chromatin loops in the human genome. Nature 583, 737-743.
    Hafner, A.,Boettiger, A., 2023. The spatial organization of transcriptional control. Nat. Rev. Genet. 24, 53-68.
    Hansen, K.D., Langmead, B.,Irizarry, R.A., 2012. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 13, R83.
    Hitz, B.C., Lee, J.-W., Jolanki, O., Kagda, M.S., Graham, K., Sud, P., Gabdank, I., Strattan, J.S., Sloan, C.A., Dreszer, T., et al. 2023. The ENCODE Uniform Analysis Pipelines, United States.
    Hon, G.C., Rajagopal, N., Shen, Y., McCleary, D.F., Yue, F., Dang, M.D.,Ren, B., 2013. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198-1206.
    Kaul, A., Bhattacharyya, S.,Ay, F., 2020. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat. Protoc. 15, 991-1012.
    Kelly, T.K., Liu, Y., Lay, F.D., Liang, G., Berman, B.P.,Jones, P.A., 2012. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497-2506.
    Kragesteen, B.K., Spielmann, M., Paliou, C., Heinrich, V., Schopflin, R., Esposito, A., Annunziatella, C., Bianco, S., Chiariello, A.M., Jerkovic, I., et al., 2018. Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat. Genet. 50, 1463-1473.
    Kribelbauer-Swietek, J.F., Pushkarev, O., Gardeux, V., Faltejskova, K., Russeil, J., van Mierlo, G.,Deplancke, B., 2024. Context transcription factors establish cooperative environments and mediate enhancer communication. Nat. Genet. 56, 2199-2212.
    Kruse, K., Hug, C.B.,Vaquerizas, J.M., 2020. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303.
    Lai, B., Tang, Q., Jin, W., Hu, G., Wangsa, D., Cui, K., Stanton, B.Z., Ren, G., Ding, Y., Zhao, M., et al., 2018. Trac-looping measures genome structure and chromatin accessibility. Nat. Methods 15, 741-747.
    Lee, B., Wang, J., Cai, L., Kim, M., Namburi, S., Tjong, H., Feng, Y., Wang, P., Tang, Z., Abbas, A., et al., 2020a. ChIA-PIPE: A fully automated pipeline for comprehensive ChIA-PET data analysis and visualization. Sci. Adv. 6, eaay2078.
    Lee, I., Razaghi, R., Gilpatrick, T., Molnar, M., Gershman, A., Sadowski, N., Sedlazeck, F.J., Hansen, K.D., Simpson, J.T.,Timp, W., 2020b. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191-1199.
    Li, T., Jia, L., Cao, Y., Chen, Q.,Li, C., 2018. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol. 19, 54.
    Li, W., Lu, J., Lu, P., Gao, Y., Bai, Y., Chen, K., Su, X., Li, M., Liu, J.e., Chen, Y., et al., 2023. scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells. Nat. Methods 20, 1493-1505.
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
    Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.-M., et al., 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322.
    Liu, T.,Conesa, A., 2025. Profiling the epigenome using long-read sequencing. Nat. Genet. 57, 27-41.
    Liu, Y., Nanni, L., Sungalee, S., Zufferey, M., Tavernari, D., Mina, M., Ceri, S., Oricchio, E.,Ciriello, G., 2021. Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes. Nat. Commun. 12, 2439.
    Lu, F., Liu, Y., Jiang, L., Yamaguchi, S.,Zhang, Y., 2014. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103-2119.
    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F.,Richmond, T.J., 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260.
    Lupianez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., et al., 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012-1025.
    Meuleman, W., Muratov, A., Rynes, E., Halow, J., Lee, K., Bates, D., Diegel, M., Dunn, D., Neri, F., Teodosiadis, A., et al., 2020. Index and biological spectrum of human DNase I hypersensitive sites. Nature 584, 244-251.
    Misteli, T., 2020. The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell 183, 28-45.
    Morabito, S., Miyoshi, E., Michael, N., Shahin, S., Martini, A.C., Head, E., Silva, J., Leavy, K., Perez-Rosendahl, M.,Swarup, V., 2021. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. Nat. Genet. 53, 1143-1155.
    Noack, F., Vangelisti, S., Ditzer, N., Chong, F., Albert, M.,Bonev, B., 2023. Joint epigenome profiling reveals cell-type-specific gene regulatory programmes in human cortical organoids. Nat. Cell Biol. 25, 1873-1883.
    Nordstrom, K.J.V., Schmidt, F., Gasparoni, N., Salhab, A., Gasparoni, G., Kattler, K., Muller, F., Ebert, P., Costa, I.G., Pfeifer, N., et al., 2019. Unique and assay specific features of NOMe-, ATAC- and DNase I-seq data. Nucleic Acids Res. 47, 10580-10596.
    Oudelaar, A.M., Davies, J.O.J., Hanssen, L.L.P., Telenius, J.M., Schwessinger, R., Liu, Y., Brown, J.M., Downes, D.J., Chiariello, A.M., Bianco, S., et al., 2018. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744-1751.
    Oudelaar, A.M.,Higgs, D.R., 2021. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154-168.
    Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A.,Wysocka, J., 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283.
    Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F.,Manke, T., 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160-165.
    Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al., 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
    Robson, M.I., Ringel, A.R.,Mundlos, S., 2019. Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D. Mol. Cell 74, 1110-1122.
    Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., et al., 2016. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. 17, 2042-2059.
    Schoenfelder, S.,Fraser, P., 2019. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437-455.
    Schones, D.E., Cui, K., Cuddapah, S., Roh, T.-Y., Barski, A., Wang, Z., Wei, G.,Zhao, K., 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887-898.
    Shipony, Z., Marinov, G.K., Swaffer, M.P., Sinnott-Armstrong, N.A., Skotheim, J.M., Kundaje, A.,Greenleaf, W.J., 2020. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319-327.
    Symmons, O., Uslu, V.V., Tsujimura, T., Ruf, S., Nassari, S., Schwarzer, W., Ettwiller, L.,Spitz, F., 2014. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390-400.
    Thurman, R.E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M.T., Haugen, E., Sheffield, N.C., Stergachis, A.B., Wang, H., Vernot, B., et al., 2012. The accessible chromatin landscape of the human genome. Nature 489, 75-82.
    Vermeulen, C., Allahyar, A., Bouwman, B.A.M., Krijger, P.H.L., Verstegen, M.J.A.M., Geeven, G., Valdes-Quezada, C., Renkens, I., Straver, R., Kloosterman, W.P., et al., 2020. Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. Nat. Protoc. 15, 364-397.
    Wei, X., Xiang, Y., Peters, D.T., Marius, C., Sun, T., Shan, R., Ou, J., Lin, X., Yue, F., Li, W., et al., 2022. HiCAR is a robust and sensitive method to analyze open-chromatin-associated genome organization. Mol. Cell 82, 1225-1238.e1226.
    Williams, C.J., Dai, D., Tran, K.A., Monroe, J.G.,Williams, B.P., 2023. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants. Genome Biol. 24, 227.
    Xie, Y., Ruan, F., Li, Y., Luo, M., Zhang, C., Chen, Z., Xie, Z., Weng, Z., Chen, W., Chen, W., et al., 2024. Spatial chromatin accessibility sequencing resolves high-order spatial interactions of epigenomic markers. Elife 12.
    Xiong, K.,Ma, J., 2019. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun. 10, 5069.
    Young, R.A., 2011. Control of the embryonic stem cell state. Cell 144, 940-954.
    Yu, M., Zemke, N.R., Chen, Z., Juric, I., Hu, R., Raviram, R., Abnousi, A., Fang, R., Zhang, Y., Gorkin, D.U., et al., 2025. Integrative analysis of the 3D genome and epigenome in mouse embryonic tissues. Nat. Struct. Mol. Biol. 32, 479-490.
    Zhang, G., Li, Y.,Wei, G., 2023. Multi-omic analysis reveals dynamic changes of three-dimensional chromatin architecture during T cell differentiation. Commun. Biol. 6, 773.
    Zhong, J.-Y., Niu, L., Lin, Z.-B., Bai, X., Chen, Y., Luo, F., Hou, C.,Xiao, C.-L., 2023. High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (7) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return