9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Genomic insights into population structure, adaptation, and archaic introgression at the Himalayan–East Asian crossroads

doi: 10.1016/j.jgg.2025.09.010
Funds:

This study was supported by the National Natural Science Foundation of China (82402203), the Major Project of the National Social Science Foundation of China (23&

ZD203), the Open Project of the Key Laboratory of Forensic Genetics of the Ministry of Public Security (2022FGKFKT05), the Center for Archaeological Science of Sichuan University (23SASA01), the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZYJC20002), and the Sichuan Science and Technology Program (2024NSFSC1518).

  • Received Date: 2025-06-28
  • Accepted Date: 2025-09-29
  • Rev Recd Date: 2025-09-28
  • Available Online: 2025-10-10
  • Tibetan-Yi Corridor (TYC) is a crucial agro-pastoral region in the eastern Himalayas, linking Qinghai‒Xizang Plateau with the lowlands of East Asia and facilitating human migration for millennia. However, genomic research on TYC populations remains limited, which limits the understanding of their origins and health. We provide genomic data from 1031 individuals belonging to Austroasiatic and Sino-Tibetan groups, including 147 whole-genome sequences from 13 underrepresented Tibeto-Burman and Austroasiatic communities. Our analysis reveals approximately 3.3 million new genetic variants and 4 distinct genetic backgrounds within TYC populations. Demographic reconstructions reveal strong genetic connections among Tibeto-Burman groups, Central Plain Sinitic populations, and Yangshao farmers, supporting a common origin for Sino-Tibetan speakers. We identify signatures of high-altitude adaptations typical of Tibetans and TYC-specific variants linked to pigmentation and hypoxia responses. Differentiation involves mechanisms such as HLA-DQB1, which are related to immune function. Several rare pathogenic variants, like CYP21A2 and PRX, are notably frequent. Variants influencing warfarin sensitivity show significant variation. Archaic human introgression further promotes genomic complexity, impacting cardiovascular and immune-related genes, which suggests adaptation through ancient human interactions. These findings refine the evolutionary history of TYC populations and underscore the need for broader genomic research to capture regional diversity and inform precision medicine.
  • loading
  • Alexander, D.H., Novembre, J., Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664.
    All of Us Research Program Genomics, I., 2024. Genomic data in the all of us research program. Nature 627, 340-346.
    Andre, M., Brucato, N., Hudjasov, G., Pankratov, V., Yermakovich, D., Montinaro, F., Kreevan, R., Kariwiga, J., Muke, J., Boland, A., et al., 2024. Positive selection in the genomes of two papua new guinean populations at distinct altitude levels. Nat. Commun. 15, 3352.
    Benton, M.L., Abraham, A., LaBella, A.L., Abbot, P., Rokas, A.,Capra, J.A., 2021. The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 22, 269-283.
    Bergstrom, A., McCarthy, S.A., Hui, R., Almarri, M.A., Ayub, Q., Danecek, P., Chen, Y., Felkel, S., Hallast, P., Kamm, J., et al., 2020. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012.
    Browning, B.L.,Browning, S.R., 2013. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459-471.
    Browning, S.R., Browning, B.L., Zhou, Y., Tucci, S.,Akey, J.M., 2018. Analysis of human sequence data reveals two pulses of archaic denisovan admixture. Cell 173, 53-61.
    Cao, Y., Li, L., Xu, M., Feng, Z., Sun, X., Lu, J., Xu, Y., Du, P., Wang, T., Hu, R., et al., 2020. The chinamap analytics of deep whole genome sequences in 10,588 individuals. Cell Res. 30, 717-731.
    Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M.,Lee, J.J., 2015. Second-generation plink: Rising to the challenge of larger and richer datasets. Gigascience 4, 7.
    Chen, L., Wolf, A.B., Fu, W., Li, L.,Akey, J.M., 2020. Identifying and interpreting apparent neanderthal ancestry in african individuals. Cell 180, 677-687.
    Choin, J., Mendoza-Revilla, J., Arauna, L.R., Cuadros-Espinoza, S., Cassar, O., Larena, M., Ko, A.M., Harmant, C., Laurent, R., Verdu, P., et al., 2021. Genomic insights into population history and biological adaptation in oceania. Nature 592, 583-589.
    Choudhury, A., Aron, S., Botigue, L.R., Sengupta, D., Botha, G., Bensellak, T., Wells, G., Kumuthini, J., Shriner, D., Fakim, Y.J., et al., 2020. High-depth african genomes inform human migration and health. Nature 586, 741-748.
    Consortium, U.K.B.W.-G.S., 2025. Whole-genome sequencing of 490,640 uk biobank participants. Nature 645, 692-701.
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and vcftools. Bioinformatics 27, 2156-2158.
    DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al., 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491-498.
    Fuller, D.Q., 2012. Pathways to asian civilizations: Tracing the origins and spread of rice and rice cultures. Rice 4, 78-92.
    Gao, Y., Zhang, C., Yuan, L., Ling, Y., Wang, X., Liu, C., Pan, Y., Zhang, X., Ma, X., Wang, Y., et al., 2020. Pgg.Han: The han chinese genome database and analysis platform. Nucleic Acids Res. 48, D971-D976.
    Ge, X., Lu, Y., Chen, S., Gao, Y., Ma, L., Liu, L., Liu, J., Ma, X., Kang, L.,Xu, S., 2023. Genetic origins and adaptive evolution of the deng people on the tibetan plateau. Mol. Biol. Evol. 40.
    GenomeAsia, K.C., 2019. The genomeasia 100k project enables genetic discoveries across asia. Nature 576, 106-111.
    Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., et al., 2015. A global reference for human genetic variation. Nature 526, 68-74.
    He, G., Li, Y., Zou, X., Li, P., Chen, P., Song, F., Gao, T., Liao, M., Yan, J.,Wu, J., 2017. Forensic characteristics and phylogenetic analyses of the chinese yi population via 19 x-chromosomal str loci. Int. J. Legal Med. 131, 1243-1246.
    He, G., Li, Y.X., Wang, M.G., Zou, X., Yeh, H.Y., Yang, X.M., Wang, Z., Tang, R.K., Zhu, S.M., Guo, J.X., et al., 2021. Fine-scale genetic structure of tujia and central han chinese revealing massive genetic admixture under language borrowing. J. Syst. Evol. 59, 1-20.
    He, G., Wang, M., Luo, L., Sun, Q., Yuan, H., Lv, H., Feng, Y., Liu, X., Cheng, J., Bu, F., et al., 2024a. Population genomics of central asian peoples unveil ancient trans-eurasian genetic admixture and cultural exchanges. hLife 2, 554-562.
    He, G., Wang, P., Chen, J., Liu, Y., Sun, Y., Hu, R., Duan, S., Sun, Q., Tang, R., Yang, J., et al., 2024b. Differentiated genomic footprints suggest isolation and long-distance migration of hmong-mien populations. BMC Biol. 22, 18.
    He, G., Yao, H., Duan, S., Luo, L., Sun, Q., Tang, R., Chen, J., Wang, Z., Sun, Y., Li, X., et al., 2025a. Pilot work of the 10k chinese people genomic diversity project along the silk road suggests a complex east-west admixture landscape and biological adaptations. Sci. China Life Sci. 68, 914-933.
    He, Y., Zhang, X., Peng, M.S., Li, Y.C., Liu, K., Zhang, Y., Mao, L., Guo, Y., Ma, Y., Zhou, B., et al., 2025b. Genome diversity and signatures of natural selection in mainland southeast asia. Nature 643, 417-426.
    Hirota, K.,Semenza, G.L., 2001. Rac1 activity is required for the activation of hypoxia-inducible factor 1. The Journal of biological chemistry 276, 21166-21172.
    Hofmeister, R.J., Ribeiro, D.M., Rubinacci, S.,Delaneau, O., 2023. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the uk biobank. Nat. Genet. 55, 1243-1249.
    Howley, C., Haas, M.A., Al Muftah, W.A., Annan, R.B., Green, E.D., Lundgren, B., Scott, R.H., Stark, Z., Tan, P., North, K.N., et al., 2025. The expanding global genomics landscape: Converging priorities from national genomics programs. Am. J. Hum. Genet. 112, 751-763.
    Huerta-Sanchez, E., Jin, X., Asan, Bianba, Z., Peter, B.M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., Somel, M., et al., 2014. Altitude adaptation in tibetans caused by introgression of denisovan-like DNA. Nature 512, 194-197.
    Jacobs, G.S., Hudjashov, G., Saag, L., Kusuma, P., Darusallam, C.C., Lawson, D.J., Mondal, M., Pagani, L., Ricaut, F.X., Stoneking, M., et al., 2019. Multiple deeply divergent denisovan ancestries in papuans. Cell 177, 1010-1021 e1032.
    Johnson, J.A., Caudle, K.E., Gong, L., Whirl-Carrillo, M., Stein, C.M., Scott, S.A., Lee, M.T., Gage, B.F., Kimmel, S.E., Perera, M.A., et al., 2017. Clinical pharmacogenetics implementation consortium (cpic) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin. Pharmacol. Ther. 102, 397-404.
    Jonnalagadda, M., Bharti, N., Kasibhatla, S.M., Wagh, M.A., Joshi, R., Ozarkar, S.,Ashma, R., 2022. Mc1r diversity and its role in skin pigmentation variation in west maharashtra, india. American journal of human biology : the official journal of the Human Biology Council 34, e23734.
    Kamm, J., Terhorst, J., Durbin, R.,Song, Y.S., 2020. Efficiently inferring the demographic history of many populations with allele count data. J. Am. Stat. Assoc. 115, 1472-1487.
    Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al., 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443.
    Lawrence, E.S., Gu, W., Bohlender, R.J., Anza-Ramirez, C., Cole, A.M., Yu, J.J., Hu, H., Heinrich, E.C., O'Brien, K.A., Vasquez, C.A., et al., 2024. Functional epas1/hif2a missense variant is associated with hematocrit in andean highlanders. Sci. Adv. 10, eadj5661.
    Leipe, C., Long, T., Sergusheva, E.A., Wagner, M.,Tarasov, P.E., 2019. Discontinuous spread of millet agriculture in eastern asia and prehistoric population dynamics. Sci. Adv. 5, eaax6225.
    Li, C., Tian, D., Tang, B., Liu, X., Teng, X., Zhao, W., Zhang, Z.,Song, S., 2021. Genome variation map: A worldwide collection of genome variations across multiple species. Nucleic Acids. Res. 49, D1186-D1191.
    Li, H.,Durbin, R., 2010. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26, 589-595.
    Lin, X.-Y., Liu, Y., Zhang, J.F., Zhong, J.X., Duan, S.H., Li, X.P., Su, H.R., Yang, Q.X., Liu, X.J., Sun, Q.X., et al., 2025. Genomic resources from the yunnan-guizhou plateau reveal the linguistic-linked demographic history and insights into human adaptation and disease of multi-ancestry populations. J. Syst. Evol.
    Lipson, M., Cheronet, O., Mallick, S., Rohland, N., Oxenham, M., Pietrusewsky, M., Pryce, T.O., Willis, A., Matsumura, H., Buckley, H., et al., 2018. Ancient genomes document multiple waves of migration in southeast asian prehistory. Science 361, 92-95.
    Liu, L., Chen, J., Wang, J., Zhao, Y.,Chen, X., 2022. Archaeological evidence for initial migration of neolithic proto sino-tibetan speakers from yellow river valley to tibetan plateau. Proc. Natl. Acad. Sci. U S A 119, e2212006119.
    Loh, P.R., Lipson, M., Patterson, N., Moorjani, P., Pickrell, J.K., Reich, D.,Berger, B., 2013. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233-1254.
    Luo, L., Wang, M., Liu, Y., Li, J., Bu, F., Yuan, H., Tang, R., Liu, C.,He, G., 2025. Sequencing and characterizing human mitochondrial genomes in the biobank-based genomic research paradigm. Sci. China Life Sci. 68, 1610-1625.
    Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M.,Chen, W.M., 2010. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867-2873.
    McColl, H., Racimo, F., Vinner, L., Demeter, F., Gakuhari, T., Moreno-Mayar, J.V., van Driem, G., Gram Wilken, U., Seguin-Orlando, A., de la Fuente Castro, C., et al., 2018. The prehistoric peopling of southeast asia. Science 361, 88-92.
    Members, C.-N., 2022. Database resources of the national genomics data center, china national center for bioinformation in 2022. Nucleic Acids Res. 50, D27.
    Meyer, M., Kircher, M., Gansauge, M.T., Li, H., Racimo, F., Mallick, S., Schraiber, J.G., Jay, F., Prufer, K., de Filippo, C., et al., 2012. A high-coverage genome sequence from an archaic denisovan individual. Science 338, 222-226.
    Miller, D.T., Lee, K., Abul-Husn, N.S., Amendola, L.M., Brothers, K., Chung, W.K., Gollob, M.H., Gordon, A.S., Harrison, S.M., Hershberger, R.E., et al., 2023. Acmg sf v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the american college of medical genetics and genomics (acmg). Genet. Med. 25, 100866.
    Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T.,Reich, D., 2012. Ancient admixture in human history. Genetics 192, 1065-1093.
    Patterson, N., Price, A.L.,Reich, D., 2006. Population structure and eigenanalysis. PLoS Genet 2, e190.
    Peng, M.S.,Zhang, Y.P., 2024. Sex-biased adaptation shapes uniparental gene pools in tibetans. Sci. China Life Sci. 67, 611-613.
    Ping, J., Liu, X., Lu, Y., Quan, C., Fan, P., Lu, H., Li, Q., Wang, C., Zhang, Z., Liu, M., et al., 2025. A highland-adaptation variant near mcur1 reduces its transcription and attenuates erythrogenesis in tibetans. Cell Genom. 5, 100782.
    Plagnol, V.,Wall, J.D., 2006. Possible ancestral structure in human populations. PLoS Genet. 2, e105.
    Prufer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P.H., de Filippo, C., et al., 2014. The complete genome sequence of a neanderthal from the altai mountains. Nature 505, 43-49.
    Qin, P.,Stoneking, M., 2015. Denisovan ancestry in east eurasian and native american populations. Mol. Biol. Evol. 32, 2665-2674.
    Quintana-Murci, L., 2002. Genetic, linguistic and archaeological perspectives on human diversity in southeast asia. Am. J. Hum. Genet. 71, 1253-1255.
    Sagart, L., Jacques, G., Lai, Y., Ryder, R.J., Thouzeau, V., Greenhill, S.J.,List, J.M., 2019. Dated language phylogenies shed light on the ancestry of sino-tibetan. Proc. Natl. Acad. Sci. U S A 116, 10317-10322.
    Schiffels, S.,Wang, K., 2020. Msmc and msmc2: The multiple sequentially markovian coalescent. Methods in molecular biology (Clifton, NJ) 2090, 147-166.
    Shi, S., 2023. The way of multi-ethnic coexistence: Experience and wisdom of ethnic exchanges in the tibetan-yi corridor region. Journal of the Minzu University of China (Philosophy and Social Sciences Edition) 50, 57-64.
    Silcocks, M., Farlow, A., Hermes, A., Tsambos, G., Patel, H.R., Huebner, S., Baynam, G., Jenkins, M.R., Vukcevic, D., Easteal, S., et al., 2023. Indigenous australian genomes show deep structure and rich novel variation. Nature 624, 593-601.
    Simonson, T.S., Yang, Y., Huff, C.D., Yun, H., Qin, G., Witherspoon, D.J., Bai, Z., Lorenzo, F.R., Xing, J., Jorde, L.B., et al., 2010. Genetic evidence for high-altitude adaptation in tibet. Science 329, 72-75.
    Singh, P.P., Vishwakarma, S., Sultana, G.N.N., Pilvar, A., Karmin, M., Rootsi, S., Villems, R., Metspalu, M., Behar, D.M., Kivisild, T., et al., 2021. Dissecting the paternal founders of mundari (austroasiatic) speakers associated with the language dispersal in south asia. Eur. J. Hum. Genet. 29, 528-532.
    Sun, Q., Wang, M., Lu, T., Duan, S., Liu, Y., Chen, J., Wang, Z., Sun, Y., Li, X., Wang, S., et al., 2024a. Differentiated adaptative genetic architecture and language-related demographical history in south china inferred from 619 genomes from 56 populations. BMC Biol. 22, 55.
    Sun, Y., Wang, M., Sun, Q., Liu, Y., Duan, S., Wang, Z., Zhou, Y., Zhong, J., Huang, Y., Huang, X., et al., 2024b. Distinguished biological adaptation architecture aggravated population differentiation of tibeto-burman-speaking people. J. Genet. Genomics 51, 517-530.
    Tao, L., Yuan, H., Zhu, K., Liu, X., Guo, J., Min, R., He, H., Cao, D., Yang, X., Zhou, Z., et al., 2023. Ancient genomes reveal millet farming-related demic diffusion from the yellow river into southwest china. Curr. Biol. 33, 4995-5002 e4997.
    Terhorst, J., Kamm, J.A.,Song, Y.S., 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303-309.
    Verma, A., Huffman, J.E., Rodriguez, A., Conery, M., Liu, M., Ho, Y.L., Kim, Y., Heise, D.A., Guare, L., Panickan, V.A., et al., 2024. Diversity and scale: Genetic architecture of 2068 traits in the va million veteran program. Science 385, eadj1182.
    Wang, C.C., Yeh, H.Y., Popov, A.N., Zhang, H.Q., Matsumura, H., Sirak, K., Cheronet, O., Kovalev, A., Rohland, N., Kim, A.M., et al., 2021a. Genomic insights into the formation of human populations in east asia. Nature 591, 413-419.
    Wang, H., Liu, D., Song, P., Jiang, F., Chi, X.,Zhang, T., 2021b. Exposure to hypoxia causes stress erythropoiesis and downregulates immune response genes in spleen of mice. BMC Genom. 22, 413.
    Wang, M., Chen, H., Luo, L., Huang, Y., Duan, S., Yuan, H., Tang, R., Liu, C.,He, G., 2025a. Forensic investigative genetic genealogy: Expanding pedigree tracing and genetic inquiry in the genomic era. J. Genet. Genomics 52, 460-472.
    Wang, M., Duan, S., Li, X., Yang, J., Yuan, H., Liu, C.,He, G., 2025b. Genome-driven chinese precision medicine: Biobank-scale genomic research as a new paradigm. The Innovation Life 3.
    Wang, M., Huang, Y., Liu, K., Wang, Z., Zhang, M., Yuan, H., Duan, S., Wei, L., Yao, H., Sun, Q., et al., 2024. Multiple human population movements and cultural dispersal events shaped the landscape of chinese paternal heritage. Mol. Biol. Evol. 41.
    Wang, M., Luo, L., Yeh, H.-Y., Wang, C.-C., Yuan, H., Liu, C., Tang, R.,He, G., 2025c. Mighty oaks from little acorns: High-quality genomes of underrepresented populations enhance health equity in precision medicine. hLife.
    Wang, T., Yang, M.A., Zhu, Z., Ma, M., Shi, H., Speidel, L., Min, R., Yuan, H., Jiang, Z., Hu, C., et al., 2025d. Prehistoric genomes from yunnan reveal ancestry related to tibetans and austroasiatic speakers. Science 388, eadq9792.
    Wang, Z., Liu, K., Yuan, H., Duan, S., Liu, Y., Luo, L., Jiang, X., Chen, S., Wei, L., Tang, R., et al., 2025e. Yanhuang paternal genomic resource suggested a weakly-differentiated multi-source admixture model for the formation of han's founding ancestral lineages. Genom. Proteom. Bioinf.
    Wangkumhang, P., Greenfield, M.,Hellenthal, G., 2022. An efficient method to identify, date, and describe admixture events using haplotype information. Genome Res. 32, 1553-1564.
    Whirl-Carrillo, M., Huddart, R., Gong, L., Sangkuhl, K., Thorn, C.F., Whaley, R.,Klein, T.E., 2021. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 110, 563-572.
    World Medical Association, I., 2001. World medical association declaration of helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ 2001.
    Wu, X.,Yan, Y., 2020. The internal anatomical structure of the ziyang human skull fossils. Acta. Anthropologica. Sinica. 39, 10.
    Yang, M.Y., Zhong, J.D., Li, X., Tian, G., Bai, W.Y., Fang, Y.H., Qiu, M.C., Yuan, C.D., Yu, C.F., Li, N., et al., 2024. Sead reference panel with 22,134 haplotypes boosts rare variant imputation and genome-wide association analysis in asian populations. Nat. Commun. 15, 10839.
    Yang, Q., Duan, S., Huang, Y., Liu, C., Wang, M.,He, G., 2025a. The large-scale whole-genome sequencing era expedited medical discovery and clinical translation. EngMedicine 2, 100055.
    Yang, Q., Sun, Y., Duan, S., Nie, S., Liu, C., Deng, H., Wang, M.,He, G., 2025b. High-quality population-specific haplotype-resolved reference panel in the genomic and pangenomic eras. Genom. Proteom. Bioinf.
    Yang, Z., Bai, C., Pu, Y., Kong, Q., Guo, Y., Ouzhuluobu, Gengdeng, Liu, X., Zhao, Q., Qiu, Z., et al., 2022a. Genetic adaptation of skin pigmentation in highland tibetans. Proc. Natl. Acad. Sci. U S A 119, e2200421119.
    Yang, Z., Chen, H., Lu, Y., Gao, Y., Sun, H., Wang, J., Jin, L., Chu, J.,Xu, S., 2022b. Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in yunnan. BMC Biol. 20, 166.
    Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z.X., Pool, J.E., Xu, X., Jiang, H., Vinckenbosch, N., Korneliussen, T.S., et al., 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75-78.
    Zhang, C., Lu, Y., Feng, Q., Wang, X., Lou, H., Liu, J., Ning, Z., Yuan, K., Wang, Y., Zhou, Y., et al., 2017. Differentiated demographic histories and local adaptations between sherpas and tibetans. Genome Biol. 18, 115.
    Zhang, M., Yan, S., Pan, W.,Jin, L., 2019. Phylogenetic evidence for sino-tibetan origin in northern china in the late neolithic. Nature 569, 112-115.
    Zhang, P., Luo, H., Li, Y., Wang, Y., Wang, J., Zheng, Y., Niu, Y., Shi, Y., Zhou, H., Song, T., et al., 2021a. Nyuwa genome resource: A deep whole-genome sequencing-based variation profile and reference panel for the chinese population. Cell Rep. 37, 110017.
    Zhang, X., Witt, K.E., Banuelos, M.M., Ko, A., Yuan, K., Xu, S., Nielsen, R.,Huerta-Sanchez, E., 2021b. The history and evolution of the denisovan-epas1 haplotype in tibetans. Proc. Natl. Acad. Sci. U S A 118.
    Zhang, Z., Zhang, Y., Wang, Y., Zhao, Z., Yang, M., Zhang, L., Zhou, B., Xu, B., Zhang, H., Chen, T., et al., 2022. The tibetan-yi region is both a corridor and a barrier for human gene flow. Cell Rep. 39, 110720.
    Zheng, W., He, Y., Guo, Y., Yue, T., Zhang, H., Li, J., Zhou, B., Zeng, X., Li, L., Wang, B., et al., 2023. Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in tibetans. Genome Biol. 24, 73.
    Zhou, D., Wu, M., Tan, Q., Sun, L., Tu, Y., Zheng, W., Zhu, Y., Yang, M., Hu, K., Hu, F., et al., 2025. Non-coding genetic elements of lung cancer identified using whole genome sequencing in 13,722 chinese. Nat. Commun. 16, 7365.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (9) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return