9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

A SABRE family protein DITA1 regulates plant height and tiller angle in rice

doi: 10.1016/j.jgg.2025.09.009
Funds:

We thank Yangwen Qian (Wimi Biotechnology company) for helping in the genetic transformation. This work was supported by grants from the National Natural Science Foundation of China (Grant No. U23A20180, 32171966) and the Sichuan Science and Technology Program (Grant No. 2023YFN0007, 2024NSFSC2061, 2024NSFSC0339, 2021YFYZ0016, 2022ZDZX0012, and 2021YFYZ0027).

  • Received Date: 2025-06-04
  • Accepted Date: 2025-09-25
  • Rev Recd Date: 2025-09-24
  • Available Online: 2025-10-10
  • Rice plant architecture is shaped by complex agronomic traits, such as plant height and tiller angle, which collectively determine yield potential. Although SABRE family proteins are conserved across eukaryotes, their roles in regulating plant architecture remain poorly understood. Here, we characterize the rice dwarf and increased tiller angle1 (dita1) mutant, which exhibits reduced plant height and spreading tillers due to abnormal cell morphology. Physiological analyses reveal that the dita1 mutant displays attenuated gravitropic responses, disrupted cytoskeleton organization, and impaired amyloplast sedimentation. DITA1 encodes a rice SABRE family member that likely localizes to the endoplasmic reticulum. Expression profiling shows that DITA1 is upregulated following gravistimulation and is enriched in the tiller base during the tillering stage. Mutation in DITA1 alters the transcript levels of genes involved in auxin biosynthesis and asymmetric distribution. Furthermore, analysis of natural variation within the DITA1 coding region identifies associations between haplotypes and tiller angles. Collectively, our findings suggest that DITA1 contributes to the regulation of plant architecture through potentially influencing on cytoskeletal dynamics, statolith-mediated gravitropism, and asymmetric auxin distribution, providing a genetic target for optimizing plant architecture in breeding programs.
  • loading
  • Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., Matsumura, H., Yoshida, K., Mitsuoka, C., Tamiru, M. et al., 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 30, 174-178.
    Aeschbacher, R.A., Hauser, M.T., Feldmann, K.A., Benfey, P.N., 1995. The SABRE gene is required for normal cell expansion in Arabidopsis. Genes Dev. 9, 330-340.
    Arieti, R.S. and Staiger, C.J., 2020. Auxin-induced actin cytoskeleton rearrangements require AUX1. New Phytol. 226, 441-459.
    Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.T., Aeschbacher, R.A., 1993. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57-70.
    Blancaflor, E.B., 2002. The cytoskeleton and gravitropism in higher plants. J. Plant Growth Regul. 21, 120-136.
    Blancaflor, E.B., 2013. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. Am. J. Bot. 100, 143-152.
    Cai, Y., Huang, L., Song, Y., Yuan, Y., Xu, S., Wang, X., Liang, Y., Zhou, J., Liu, G., Li, J. et al., 2023. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnol. J. 21, 1217-1228.
    Chen, Y., Fan, X., Song, W., Zhang, Y., Xu, G., 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol. J. 10, 139-149.
    Cheng, X., Bezanilla, M., 2021. SABRE populates ER domains essential for cell plate maturation and cell expansion influencing cell and tissue patterning. Elife 10, e65166.
    Clerget, B., Bueno, C., Domingo, A.J., Layaoen, H.L., Vial, L., 2016. Leaf emergence, tillering, plant growth, and yield in response to plant density in a high-yielding aerobic rice crop. Field Crops Res. 199, 52-64.
    Dong, H., Zhao, H., Xie, W., Han, Z., Li, G., Yao, W., Bai, X., Hu, Y., Guo, Z., Lu, K. et al., 2016. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet. 12, e1006412.
    Ferrero-Serrano, A., Cantos, C., Assmann, S.M., 2019. The role of dwarfing traits in historical and modern agriculture with a focus on rice. Cold Spring Harb. Perspect Biol. 11, a034645.
    Guo, W., Chen, L., Herrera-Estrella, L., Cao, D., Tran, L.S.P., 2020. Altering plant architecture to improve performance and resistance. Trends Plant Sci. 25, 1154-1170.
    He, Y., Li, L., Jiang, D., 2021. Understanding the regulatory mechanisms of rice tiller angle, then and now. Plant Mol. Biol. Rep. 39, 640-647.
    Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T., 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282.
    Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S., Inukai, Y., Fujioka, S., Shimada, Y., Takatsuto, S., Agetsuma, M., Yoshida, S., Watanabe, Y. et al., 2002. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 32, 495-508.
    Hu, Y., Li, S., Fan, X., Song, S., Zhou, X., Weng, X., Xiao, J., Li, X., Xiong, L., You, A. et al., 2020. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing hsfa2d expression and auxin content. Plant Physiol. 184, 1424-1437.
    Huang, L., Wang, W., Zhang, N., Cai, Y., Liang, Y., Meng, X., Yuan, Y., Li, J., Wu, D., Wang, Y., 2021. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol. 231, 1073-1087.
    Hussey, P.J., Ketelaar, T., Deeks, M.J., 2006. Control of the actin cytoskeleton in plant cell growth. Annu. Rev. Plant Biol. 57, 109-125.
    Jin, J., Huang, W., Gao, J.-P., Yang, J., Shi, M., Zhu, M.-Z., Luo, D., Lin, H.X., 2008. Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365-1369.
    Lanza, M., Garcia-Ponce, B., Castrillo, G., Catarecha, P., Sauer, M., Rodriguez-Serrano, M., Paez-Garcia, A., Sanchez-Bermejo, E., T, C.M., Leo del Puerto, Y. et al., 2012. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev. Cell 22, 1275-1285.
    Leader, D.P., Milner-White, E.J., 2011. The structure of the ends of α-helices in globular proteins: effect of additional hydrogen bonds and implications for helix formation. Proteins 79, 1010-1019.
    Li, L., Li, J., Liu, K., Jiang, C., Jin, W., Ye, J., Qin, T., Luo, B., Chen, Z., Li, J. et al., 2024. DGW1, encoding an hnRNP-like RNA binding protein, positively regulates grain size and weight by interacting with GW6 mRNA. Plant Biotechnol. J. 22, 512-526.
    Li, P., Wang, Y., Qian, Q., Fu, Z., Wang, M., Zeng, D., Li, B., Wang, X., Li, J., 2007. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 17, 402-410.
    Li, P., Zhang, Z., Tong, Y., Foda, B.M., Day, B., 2023. ILEE: algorithms and toolbox for unguided and accurate quantitative analysis of cytoskeletal images. J. Cell Biol. 222.
    Li, Y., Deng, Z., Kamisugi, Y., Chen, Z., Wang, J., Han, X., Wei, Y., He, H., Terzaghi, W., Cove, D.J. et al., 2021. A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens. Nat. Commun. 12, 4470.
    Li, Y., Zhu, J., Wu, L., Shao, Y., Wu, Y., Mao, C., 2019. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol. 60, 2720-2732.
    Liu, F., Wang, P., Zhang, X., Li, X., Yan, X., Fu, D., Wu, G., 2018. The genetic and molecular basis of crop height based on a rice model. Planta 247, 1-26.
    Liu, S., Zhong, J., Ling, S., Liu, Y., Xu, Y., Yao, J., 2021. OsAPT1 a pollen preferentially expressed gene is essential for pollen tube germination and elongation in rice. Plant Mol. Biol. Rep. 39, 87-97.
    Liu, Y., Yao, F., Zou, J., Guo, D., Jiang, W., Fan, J., Li, R., Yang, Z., Ma, Y., Deng, H., et al., 2025. RPAD locus controls prostrate growth habit in Oryza nivara. Plant Genome 18, e70032.
    Mei, Y., Jia, W.J., Chu, Y.J., Xue, H.W., 2012. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res. 22, 581-597.
    Morita, M.T., Tasaka, M., 2004. Gravity sensing and signaling. Curr. Opin. Plant Biol. 7, 712-718.
    Najrana, T., Sanchez-Esteban, J., 2016. Mechanotransduction as an adaptation to gravity. Front Pediatr. 4, 140.
    Neuman, S.D., Jorgensen, J.R., Cavanagh, A.T., Smyth, J.T., Selegue, J.E., Emr, S.D., Bashirullah, A., 2022. The Hob proteins are novel and conserved lipid-binding proteins at ER-PM contact sites. J. Cell Sci. 135, jcs259086.
    Okamura, M., Hirose, T., Hashida, Y., Yamagishi, T., Ohsugi, R., Aoki, N., 2013. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct. Plant Biol. 40, 1137-1146.
    Perera, I.Y., Heilmann, I., Boss, W.F., 1999. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc. Natl. Acad. Sci. U. S. A. 96, 5838-5843.
    Perera, I.Y., Hung, C.Y., Brady, S., Muday, G.K., Boss, W.F., 2006. A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol. 140, 746-760.
    Pietra, S., Gustavsson, A., Kiefer, C., Kalmbach, L., Horstedt, P., Ikeda, Y., Stepanova, A.N., Alonso, J.M., Grebe, M., 2013. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat. Commun. 4, 2779.
    Procissi, A., Guyon, A., Pierson, E.S., Giritch, A., Knuiman, B., Grandjean, O., Tonelli, C., Derksen, J., Pelletier, G., Bonhomme, S., 2003. KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J. 36, 894-904.
    Sablowski, R., Carnier-Dornelas, M., 2013. Interplay between cell growth and cell cycle in plants. J. Exp. Bot. 65, 2703-2714.
    Sack, F.D., 1997. Plastids and gravitropic sensing. Planta 203, 63-68.
    Song, Y., Li, G., Nowak, J., Zhang, X., Xu, D., Yang, X., Huang, G., Liang, W., Yang, L., Wang, C. et al., 2019. The rice actin-binding protein RMD regulates light-dependent shoot gravitropism. Plant Physiol. 181, 630-644.
    Spielmeyer, W., Ellis, M.H., Chandler, P.M., 2002. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl. Acad. Sci. U. S. A., 99, 9043-9048.
    Taiz, L., 1984. Plant cell expansion: regulation of cell wall mechanical properties. Annu. Rev. Plant Biol. 35, 585-657.
    Tan, L., Li, X., Liu, F., Sun, X., Li, C., Zhu, Z., Fu, Y., Cai, H., Wang, X., Xie, D. et al., 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40, 1360-1364.
    Tong, H., Chu, C., 2023. Coordinating gibberellin and brassinosteroid signaling beyond Green Revolution. J. Genet. Genomics 50, 459-461.
    Wang, W., Gao, H., Liang, Y., Li, J., Wang, Y., 2022. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Mol. Plant 15, 125-137.
    Wang, Y., Li, J., 2005. The plant architecture of rice (Oryza sativa). Plant Mol. Biol. 59, 75-84.
    Wang, Y., Li, J., 2006. Genes controlling plant architecture. Curr. Opin. Biotech. 17, 123-129.
    Wang, Y., Li, J., 2008. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253-279.
    Wei, X., Huang, X., 2019. Origin, taxonomy, and phylogenetics of rice, in: Bao, J. (ed), Rice. AACC International Press, Devon, pp. 1-29.
    Wu, S., Xie, Y., Zhang, J., Ren, Y., Zhang, X., Wang, J., Guo, X., Wu, F., Sheng, P., Wang, J. et al., 2015. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell 27, 2829-2845.
    Wu, X., Tang, D., Li, M., Wang, K., Cheng, Z., 2012. Loose Plant Architecture1, an indeterminate domain protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol. 161, 317-329.
    Xie, W., Wang, G., Yuan, M., Yao, W., Lyu, K., Zhao, H., Yang, M., Li, P., Zhang, X., Yuan, J. et al., 2015. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc. Natl. Acad. Sci. U. S. A. 112, 5411-5419.
    Xu, M., Zhu, L., Shou, H., Wu, P., 2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 46, 1674-1681.
    Xu, Y., Zhang, S., Guo, H., Wang, S., Xu, L., Li, C., Qian, Q., Chen, F., Geisler, M., Qi, Y. et al., 2014. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J. 79, 106-117.
    Xu, Z., Dooner, H.K., 2006. The maize aberrant pollen transmission 1 gene is a SABRE/KIP homolog required for pollen tube growth. Genetics 172, 1251-1261.
    Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M., Sazuka, T., 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol. 143, 1362-1371.
    Yu, H., Luo, N., Sun, L., Liu, D., 2012. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling. J. Exp. Bot. 63, 4527-4538.
    Yue, J., Hu, X., Huang, J., 2014. Origin of plant auxin biosynthesis. Trends Plant Sci. 19, 764-770.
    Zhang, C., Xu, Y., Guo, S., Zhu, J., Huan, Q., Liu, H., Wang, L., Luo, G., Wang, X., Chong, K., 2012. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLOS Genet. 8, e1002686.
    Zhang, N., Yu, H., Yu, H., Cai, Y., Huang, L., Xu, C., Xiong, G., Meng, X., Wang, J., Chen, H. et al., 2018. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell 30, 1461-1475.
    Zhang, W., Tan, L., Sun, H., Zhao, X., Liu, F., Cai, H., Fu, Y., Sun, X., Gu, P., Zhu, Z. et al., 2019. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol. Plant 12, 1075-1089.
    Zhang, Z., Zhang, Y., Tan, H., Wang, Y., Li, G., Liang, W., Yuan, Z., Hu, J., Ren, H., Zhang, D., 2011. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 23, 681-700.
    Zhao, H., Ma, T., Wang, X., Deng, Y., Ma, H., Zhang, R., Zhao, J., 2015a. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant Cell Environ. 38, 2208-2222.
    Zhao, H., Yao, W., Ouyang, Y., Yang, W., Wang, G., Lian, X., Xing, Y., Chen, L., Xie, W., 2014. RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res. 43, 1018-1022.
    Zhao, L., Tan, L., Zhu, Z., Xiao, L., Xie, D., Sun, C., 2015b. PAY1 improves plant architecture and enhances grain yield in rice. Plant J. 83, 528-536.
    Zhu, J., Geisler, M., 2015. Keeping it all together: auxin-actin crosstalk in plant development. J. Exp. Bot. 66, 4983-4998.
    Zou, T., Li, G., Liu, M., Liu, R., Yang, S., Wang, K., Lu, L., Ye, Q., Liu, J., Liang, J. et al., 2023. A ubiquitin-specific protease functions in regulating cell death and immune responses in rice. Plant Cell Environ. 46, 1312-1326.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (9) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return