9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Rapamycin alleviates neurodegeneration in a Drosophila model of spinocerebellar ataxia type 51

doi: 10.1016/j.jgg.2025.08.010
Funds:

Clinical Medicine Plus X-Young Scholars Project of Peking University (PKU2025PKULCXQ026)

High Quality Clinical Research Project of Peking University First Hospital, No. 2022CR69), and Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases (BZ0317).

National High Level Hospital Clinical Research Funding (Interdepartmental Research Project of Peking University First Hospital, No. 2023IR51

This work is financially supported by the National Natural Science Foundations of China (82402177, 82171846, 82422025, 82471430)

  • Received Date: 2025-02-25
  • Accepted Date: 2025-08-26
  • Rev Recd Date: 2025-08-23
  • Available Online: 2025-08-30
  • Spinocerebellar ataxia (SCA) type 51 is a neurodegenerative disease caused by CAG repeat expansions in exon 1 of the THAP11 gene. These repeats are translated into a glutamine-rich protein, THAP11-polyQ, which forms protein aggregates and exhibits toxicity in cell models; however, the underlying mechanism remains unclear. In this study, we generate transgenic Drosophila models expressing varying lengths of THAP11-polyQ using the UAS-GAL4 system and assess neurodegeneration through pathological and behavioral analyses. Our results demonstrate that expression of THAP11-polyQ in transgenic flies leads to progressive neuronal cell loss, locomotor deficiency, and reduced survival. RNA sequencing of patient-derived skin fibroblasts reveals significant enrichment of the PI3K–Akt–mTOR pathway, and electron microscopy of transgenic flies shows an increase in multilamellar bodies, suggesting involvement of autophagy in SCA51. Consequently, we treat the fly model with rapamycin, an mTOR inhibitor known to enhance autophagy. This treatment reduces toxic THAP11-polyQ protein aggregates, significantly alleviates neuronal degeneration, and improves locomotor function, consistent with the rescue effects observed upon overexpression of Atg8a. Overall, these findings suggest that the Drosophila model, which recapitulates the neurodegenerative features of SCA51, can be used to investigate pathogenic mechanisms, and that rapamycin holds promising potential as a therapeutic approach for this disease.
  • loading
  • Ashkenazi, A., Bento, C.F., Ricketts, T., Vicinanza, M., Siddiqi, F., Pavel, M., Squitieri, F., Hardenberg, M.C., Imarisio, S., Menzies, F.M., et al., 2017. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545, 108-111.
    Bunting, E.L., Hamilton, J.,Tabrizi, S.J., 2022. Polyglutamine diseases. Curr Opin Neurobiol 72, 39-47.
    Chern, T., Achilleos, A., Tong, X., Hill, M.C., Saltzman, A.B., Reineke, L.C., Chaudhury, A., Dasgupta, S.K., Redhead, Y., Watkins, D., et al., 2022. Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy. Nat. Commun. 13, 134.
    Dejosez, M., Krumenacker, J.S., Zitur, L.J., Passeri, M., Chu, L.F., Songyang, Z., Thomson, J.A.,Zwaka, T.P., 2008. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133, 1162-1174.
    Deng, J., Yu, J., Li, P., Luan, X., Cao, L., Zhao, J., Yu, M., Zhang, W., Lv, H., Xie, Z., et al., 2020. Expansion of GGC Repeat in GIPC1 Is Associated with Oculopharyngodistal Myopathy. Am. J. Hum. Genet. 106, 793-804.
    Fearnley, L.G., Rafehi, H., Bennett, M.F.,Bahlo, M., 2023. Exploring THAP11 Repeat Expansion beyond Chinese-Ancestry Cohorts: An Examination of 1000 Genomes and UK Biobank Data. Mov. Disord. 38, 2320-2322.
    Feng, X., Luo, S.,Lu, B., 2018. Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem. Sci. 43, 424-435.
    Folger, A.,Wang, Y., 2021. The Cytotoxicity and Clearance of Mutant Huntingtin and Other Misfolded Proteins. Cells 10, 2835.
    Gusella, J.F.,MacDonald, M.E., 2000. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109-115.
    Jackson, G.R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P.W., MacDonald, M.E.,Zipursky, S.L., 1998. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633-642.
    Khan, M.R., Yin, X., Kang, S.U., Mitra, J., Wang, H., Ryu, T., Brahmachari, S., Karuppagounder, S.S., Kimura, Y., Jhaldiyal, A., et al., 2023. Enhanced mTORC1 signaling and protein synthesis in pathologic alpha-synuclein cellular and animal models of Parkinson's disease. Sci. Transl. Med. 15, eadd0499.
    Klockgether, T., Mariotti, C.,Paulson, H.L., 2019. Spinocerebellar ataxia. Nat Rev Dis Primers 5, 24.
    Levine, B.,Kroemer, G., 2019. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 176, 11-42.
    Liu, Y.J., Wang, J.Y., Zhang, X.L., Jiang, L.L.,Hu, H.Y., 2024. Ataxin-2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling. FEBS. J. 291, 1795-1812.
    Livak, K.J.,Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
    Lu, B.,Vogel, H., 2009. Drosophila models of neurodegenerative diseases. Annu Rev Pathol 4, 315-342.
    Marcelo, A., Afonso, I.T., Afonso-Reis, R., Brito, D.V.C., Costa, R.G., Rosa, A., Alves-Cruzeiro, J., Ferreira, B., Henriques, C., Nobre, R.J., et al., 2021. Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death Dis. 12, 1117.
    Martin, D.D., Ladha, S., Ehrnhoefer, D.E.,Hayden, M.R., 2015. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 38, 26-35.
    Nedelsky, N.B., Pennuto, M., Smith, R.B., Palazzolo, I., Moore, J., Nie, Z., Neale, G.,Taylor, J.P., 2010. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67, 936-952.
    Nisoli, I., Chauvin, J.P., Napoletano, F., Calamita, P., Zanin, V., Fanto, M.,Charroux, B., 2010. Neurodegeneration by polyglutamine Atrophin is not rescued by induction of autophagy. Cell Death Differ. 17, 1577-1587.
    Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., et al., 2007. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863.
    Panwar, V., Singh, A., Bhatt, M., Tonk, R.K., Azizov, S., Raza, A.S., Sengupta, S., Kumar, D.,Garg, M., 2023. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 8, 375.
    Paulson, H.L., Shakkottai, V.G., Clark, H.B.,Orr, H.T., 2017. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat. Rev. Neurosci. 18, 613-626.
    Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J., et al., 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585-595.
    Sharma, A., Narasimha, K., Manjithaya, R.,Sheeba, V., 2023. Restoration of Sleep and Circadian Behavior by Autophagy Modulation in Huntington's Disease. J. Neurosci. 43, 4907-4925.
    Soares, T.R., Reis, S.D., Pinho, B.R., Duchen, M.R.,Oliveira, J.M.A., 2019. Targeting the proteostasis network in Huntington's disease. Ageing Res. Rev. 49, 92-103.
    Tan, D., Wei, C., Chen, Z., Huang, Y., Deng, J., Li, J., Liu, Y., Bao, X., Xu, J., Hu, Z., et al., 2023. CAG Repeat Expansion in THAP11 Is Associated with a Novel Spinocerebellar Ataxia. Mov. Disord. 38, 1282-1293.
    Wang, P., Deng, J., Dong, J., Liu, J., Bigio, E.H., Mesulam, M., Wang, T., Sun, L., Wang, L., Lee, A.Y., et al., 2019. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 15, e1007947.
    Warrick, J.M., Paulson, H.L., Gray-Board, G.L., Bui, Q.T., Fischbeck, K.H., Pittman, R.N.,Bonini, N.M., 1998. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939-949.
    Watchon, M., Luu, L., Plenderleith, S.K., Yuan, K.C.,Laird, A.S., 2023. Autophagy Function and Benefits of Autophagy Induction in Models of Spinocerebellar Ataxia Type 3. Cells 12, 893.
    Watchon, M., Robinson, K.J., Luu, L., An, Y., Yuan, K.C., Plenderleith, S.K., Cheng, F., Don, E.K., Nicholson, G.A., Lee, A., et al., 2024. Treatment with sodium butyrate induces autophagy resulting in therapeutic benefits for spinocerebellar ataxia type 3. FASEB J. 38, e23429.
    Wright, G.E.B., Black, H.F., Collins, J.A., Gall-Duncan, T., Caron, N.S., Pearson, C.E.,Hayden, M.R., 2020. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies. Lancet Neurol. 19, 930-939.
    Yu, J., Liufu, T., Zheng, Y., Xu, J., Meng, L., Zhang, W., Yuan, Y., Hong, D., Charlet-Berguerand, N., Wang, Z., et al., 2022. CGG repeat expansion in NOTCH2NLC causes mitochondrial dysfunction and progressive neurodegeneration in Drosophila model. Proc. Natl. Acad. Sci. U. S. A. 119, e2208649119.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (23) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return