Abdelgawad, Z.A., Khalafaallah, A.A., Abdallah, M.M., 2014. Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agricul. Sci. 05, 1077-1088.
|
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78.
|
Acosta, I.F., Laparra, H., Romero, S.P., Schmelz, E., Hamberg, M., Mottinger, J.P., Moreno, M.A., Dellaporta, S.L., 2009. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323, 262-265.
|
An, C., Deng, L., Zhai, H., You, Y., Wu, F., Zhai, Q., Goossens, A., Li, C., 2022. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol. Plant 15, 1329-1346.
|
An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., Chen, R., Jiang, H., Wang, H., Chen, Q., et al., 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc. Natl. Acad. Sci. U. S. A. 114, E8930-E8939.
|
An, J.P., Wang, X.F., Zhang, X.W., You, C.X., Hao, Y.J., 2021. Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation. New Phytol. 229, 2707-2729.
|
Attaran, E., Major, I.T., Cruz, J.A., Rosa, B.A., Koo, A.J., Chen, J., Kramer, D.M., He, S.Y., Howe, G.A., 2014. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol. 165, 1302-1314.
|
Azeem, U., 2018. Ameliorating nickel stress by jasmonic acid treatment in Zea mays L. Russ. Agric. Sci. 44, 209-215.
|
Backstrom, S., Elfving, N., Nilsson, R., Wingsle, G., Bjorklund, S., 2007. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717-729.
|
Ballare, C.L., 2014. Light regulation of plant defense. Annu. Rev. Plant Biol. 65, 335-363.
|
Berger, B., Baldwin, I.T., 2007. The hydroxyproline-rich glycopeptide systemin precursor NapreproHypSys does not play a central role in Nicotiana attenuata's anti-herbivore defense responses. Plant Cell Environ. 30, 1450-1464.
|
Boter, M., Ruiz-Rivero, O., Abdeen, A., Prat, S., 2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18, 1577-1591.
|
Bu, Q., Jiang, H., Li, C.B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., Li, C., 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 18, 756-767.
|
Cabot, C., Gallego, B., Martos, S., Barcelo, J., Poschenrieder, C., 2013. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 237, 337-349.
|
Cai, Q., Yuan, Z., Chen, M., Yin, C., Luo, Z., Zhao, X., Liang, W., Hu, J., Zhang, D., 2014. Jasmonic acid regulates spikelet development in rice. Nat. Commun. 5, 3476.
|
Caldelari, D., Wang, G., Farmer, E.E., Dong, X., 2011. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol. Biol. 75, 25-33.
|
Campos, M.L., Kang, J.H., Howe, G.A., 2014. Jasmonate-triggered plant immunity. J. Chem. Ecol. 40, 657-675.
|
Campos, M.L., Yoshida, Y., Major, I.T., de Oliveira Ferreira, D., Weraduwage, S.M., Froehlich, J.E., Johnson, B.F., Kramer, D.M., Jander, G., Sharkey, T.D., et al., 2016. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 7, 12570.
|
Cao, L., Liu, L., Zhang, C., Ren, W., Zheng, J., Tao, C., Zhu, W., Xiang, M., Wang, L., Liu, Y., et al., 2024. The MYC2 and MYB43 transcription factors cooperate to repress HMA2 and HMA4 expression, altering cadmium tolerance in Arabidopsis thaliana. J. Hazard Mater. 479, 135703.
|
Cao, L., Tian, J., Liu, Y., Chen, X., Li, S., Persson, S., Lu, D., Chen, M., Luo, Z., Zhang, D., et al., 2021. Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. Plant J. 108, 1083-1096.
|
Cerdan, P.D., Chory, J., 2003. Regulation of flowering time by light quality. Nature 423, 881-885.
|
Cevik, V., Kidd, B.N., Zhang, P., Hill, C., Kiddle, S., Denby, K.J., Holub, E.B., Cahill, D.M., Manners, J.M., Schenk, P.M., et al., 2012. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol. 160, 541-555.
|
Chen, H., Gonzales-Vigil, E., Wilkerson, C.G., Howe, G.A., 2007. Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol. 143, 1954-1967.
|
Chen, H., Wilkerson, C.G., Kuchar, J.A., Phinney, B.S., Howe, G.A., 2005. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc. Natl. Acad. Sci. U. S. A. 102, 19237-19242.
|
Chen, Q., Sun, J., Zhai, Q., Zhou, W., Qi, L., Xu, L., Wang, B., Chen, R., Jiang, H., Qi, J., et al., 2011. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23, 3335-3352.
|
Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Li, H., Zheng, W., Sun, J., et al., 2012. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24, 2898-2916.
|
Chico, J.M., Lechner, E., Fernandez-Barbero, G., Canibano, E., Garcia-Casado, G., Franco-Zorrilla, J.M., Hammann, P., Zamarreno, A.M., Garcia-Mina, J.M., Rubio, V., et al., 2020. CUL3BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proc. Natl. Acad. Sci. U. S. A. 117, 6205-6215.
|
Chini, A., Fonseca, S., Chico, J.M., Fernandez-Calvo, P., Solano, R., 2009. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 59, 77-87.
|
Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., et al., 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671.
|
Chung, H.S., Howe, G.A., 2009. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21, 131-145.
|
Chung, H.S., Koo, A.J., Gao, X., Jayanty, S., Thines, B., Jones, A.D., Howe, G.A., 2008. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol. 146, 952-964.
|
Dathe, W., Ronsch, H., Preiss, A., Schade, W., Sembdner, G., and Schreiber, K., 1981. Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153, 530-535.
|
Dave, A., Hernandez, M.L., He, Z., Andriotis, V.M., Vaistij, F.E., Larson, T.R., Graham, I.A., 2011. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23, 583-599.
|
Dave, A., Vaistij, F.E., Gilday, A.D., Penfield, S.D., Graham, I.A., 2016. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J. Exp. Bot. 67, 2277-2284.
|
De Geyter, N., Gholami, A., Goormachtig, S., Goossens, A., 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 17, 349-359.
|
De Vleesschauwer, D., Filipe, O., Hoffman, G., Seifi, H.S., Haeck, A., Canlas, P., Van Bockhaven, J., De Waele, E., Demeestere, K., Ronald, P., et al., 2018. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. New Phytol. 217, 305-319.
|
Delfin, J.C., Kanno, Y., Seo, M., Kitaoka, N., Matsuura, H., Tohge, T., Shimizu, T., 2022. AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana. Plant J. 110, 1082-1096.
|
Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., Turner, J.G., 2002. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457-466.
|
Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., et al., 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225-2245.
|
Dong, K., Wu, F., Cheng, S., Li, S., Zhang, F., Xing, X., Jin, X., Luo, S., Feng, M., Miao, R., et al., 2024. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice. Mol. Plant 17, 900-919.
|
Dong, W., Wang, M., Xu, F., Quan, T., Peng, K., Xiao, L., Xia, G., 2013. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol. 161, 1217-1228.
|
Dong, X., 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1, 316-323.
|
Du, M., Zhao, J., Tzeng, D.T.W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., et al., 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29, 1883-1906.
|
Efimova, M.V., Mukhamatdinova, E.A., Kovtun, I.S., Kabil, F.F., Medvedeva, Y.V., Kuznetsov, V.V., 2019. Jasmonic acid enhances the potato plant resistance to the salt stress in vitro. Dokl. Biol. Sci. 488, 149-152.
|
El Oirdi, M., El Rahman, T.A., Rigano, L., El Hadrami, A., Rodriguez, M.C., Daayf, F., Vojnov, A., Bouarab, K., 2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23, 2405-2421.
|
Elfving, N., Davoine, C., Benlloch, R., Blomberg, J., Brannstrom, K., Muller, D., Nilsson, A., Ulfstedt, M., Ronne, H., Wingsle, G., et al., 2011. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc. Natl. Acad. Sci. U. S. A. 108, 8245-8250.
|
Farmer, E.E., Ryan, C.A., 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U. S. A. 87, 7713-7716.
|
Feys, B., Benedetti, C.E., Penfold, C.N., Turner, J.G., 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751-759.
|
Fu, J., Wu, H., Ma, S., Xiang, D., Liu, R., Xiong, L., 2017. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front. Plant Sci. 8, 2108.
|
Glauser, G., Dubugnon, L., Mousavi, S.A., Rudaz, S., Wolfender, J.L., Farmer, E.E., 2009. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J. Biol. Chem. 284, 34506-34513.
|
Goetz, S., Hellwege, A., Stenzel, I., Kutter, C., Hauptmann, V., Forner, S., McCaig, B., Hause, G., Miersch, O., Wasternack, C., et al., 2012. Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiol. 158, 1715-1727.
|
Green, T.R., Ryan, C.A., 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175, 776-777.
|
Guan, Y., Ding, L., Jiang, J., Shentu, Y., Zhao, W., Zhao, K., Zhang, X., Song, A., Chen, S., Chen, F., 2021. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. Hortic. Res. 8, 87.
|
Guo, Q., Major, I.T., Howe, G.A., 2018a. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. Curr. Opin. Plant Biol. 44, 72-81.
|
Guo, Q., Yoshida, Y., Major, I.T., Wang, K., Sugimoto, K., Kapali, G., Havko, N.E., Benning, C., Howe, G.A., 2018b. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115, E10768-E10777.
|
Han, X., Zhang, M., Yang, M., Hu, Y., 2020. Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development. Plant Cell 32, 1049-1062.
|
Handley, R., Ekbom, B., Agren, J., 2005. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol. Entomol. 30, 284-292.
|
Havko, N.E., Major, I.T., Jewell, J.B., Attaran, E., Browse, J., Howe, G.A., 2016. Control of carbon assimilation and partitioning by jasmonate: an accounting of growth-defense tradeoffs. Plants (Basel) 5, 7.
|
Hayward, A.P., Moreno, M.A., Howard, T.P., 3rd, Hague, J., Nelson, K., Heffelfinger, C., Romero, S., Kausch, A.P., Glauser, G., Acosta, I.F., et al., 2016. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci. Adv. 2, e1600991.
|
He, Y., Fukushige, H., Hildebrand, D.F., Gan, S., 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876-884.
|
He, Y., Zhang, H., Sun, Z., Li, J., Hong, G., Zhu, Q., Zhou, X., MacFarlane, S., Yan, F., Chen, J., 2017. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice. New Phytol. 214, 388-399.
|
Heil, M., Baldwin, I.T., 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61-67.
|
Hori, Y., Kurotani, K., Toda, Y., Hattori, T., Takeda, S., 2014. Overexpression of the JAZ factors with mutated jas domains causes pleiotropic defects in rice spikelet development. Plant Signal Behav. 9, e970414.
|
Howe, G.A., Jander, G., 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41-66.
|
Howe, G.A., Ryan, C.A., 1999. Suppressors of systemin signaling identify genes in the tomato wound response pathway. Genetics 153, 1411-1421.
|
Hu, P., Zhou, W., Cheng, Z., Fan, M., Wang, L., Xie, D., 2013a. JAV1 controls jasmonate-regulated plant defense. Mol. Cell 50, 504-515.
|
Hu, S., Yang, H., Gao, H., Yan, J., Xie, D., 2021. Control of seed size by jasmonate. Sci. China Life Sci. 64, 1215-1226.
|
Hu, Y., Jiang, L., Wang, F., Yu, D., 2013b. Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907-2924.
|
Hu, Y., Liu, Y., Tao, J.J., Lu, L., Jiang, Z.H., Wei, J.J., Wu, C.M., Yin, C.C., Li, W., Bi, Y.D., et al., 2023. GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean. J. Integr. Plant Biol. 65, 1983-2000.
|
Hua, B., Chang, J., Xu, Z., Han, X., Xu, M., Yang, M., Yang, C., Ye, Z., Wu, S., 2021. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytol. 230, 1063-1077.
|
Huang, H., Chen, Y., Wang, S., Qi, T., Song, S., 2023. Jasmonate action and crosstalk in flower development and fertility. J. Exp. Bot. 74, 1186-1197.
|
Huang, Y., Yang, J., Sun, X., Li, J., Cao, X., Yao, S., Han, Y., Chen, C., Du, L., Li, S., et al., 2025. Perception of viral infections and initiation of antiviral defence in rice. Nature 641, 173-181.
|
Huffaker, A., Pearce, G., Ryan, C.A., 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. U. S. A. 103, 10098-10103.
|
Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K., 2001. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13, 2191-2209.
|
Jiang, Y., Liang, G., Yang, S., Yu, D., 2014. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26, 230-245.
|
Ju, L., Jing, Y., Shi, P., Liu, J., Chen, J., Yan, J., Chu, J., Chen, K.M., Sun, J., 2019. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. New Phytol. 223, 246-260.
|
Jung, C., Zhao, P., Seo, J.S., Mitsuda, N., Deng, S., Chua, N.H., 2015. PLANT U-BOX PROTEIN10 regulates MYC2 stability in Arabidopsis. Plant Cell 27, 2016-2031.
|
Kang, J.H., Liu, G., Shi, F., Jones, A.D., Beaudry, R.M., Howe, G.A., 2010. The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol. 154, 262-272.
|
Kazan, K., Manners, J.M., 2013. MYC2: the master in action. Mol. Plant 6, 686-703.
|
Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M., Kazan, K., 2009. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21, 2237-2252.
|
Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., Xu, W., Liu, J., Shani, E., Fu, C., et al., 2018. PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Rep. 22, 1350-1363.
|
Lee, H.Y., Seo, J.S., Cho, J.H., Jung, H., Kim, J.K., Lee, J.S., Rhee, S., Do Choi, Y., 2013. Oryza sativa COI homologues restore jasmonate signal transduction in Arabidopsis coi1-1 mutants. PLoS One 8, e52802.
|
Lee, K., Yoon, H., Park, O.S., Seo, P.J., 2024. ENHANCER OF SHOOT REGENERATION1 promotes de novo root organogenesis after wounding in Arabidopsis leaf explants. Plant Cell 36, 2359-2374.
|
Lei, G.J., Sun, L., Sun, Y., Zhu, X.F., Li, G.X., Zheng, S.J., 2020. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J. Integr. Plant Biol. 62, 218-227.
|
Li, C., Liu, G., Xu, C., Lee, G.I., Bauer, P., Ling, H.Q., Ganal, M.W., Howe, G.A., 2003. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15, 1646-1661.
|
Li, C., Zhao, J., Jiang, H., Wu, X., Sun, J., Zhang, C., Wang, X., Lou, Y., Li, C., 2006. The wound response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1). Plant Cell Physiol. 47, 653-663.
|
Li, H., Xue, D., Gao, Z., Yan, M., Xu, W., Xing, Z., Huang, D., Qian, Q., Xue, Y., 2009. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J. 57, 593-605.
|
Li, L., Li, C., Lee, G.I., Howe, G.A., 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. U. S. A. 99, 6416-6421.
|
Li, L., Zhao, Y., McCaig, B.C., Wingerd, B.A., Wang, J., Whalon, M.E., Pichersky, E., Howe, G.A., 2004. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[W]. Plant Cell 16, 126-143.
|
Li, M., Yu, G., Cao, C., Liu, P., 2021. Metabolism, signaling, and transport of jasmonates. Plant Commun. 2, 100231.
|
Li, R., Schuman, M.C., Wang, Y., Llorca, L.C., Bing, J., Bennion, A., Halitschke, R., Baldwin, I.T., 2018. Jasmonate signaling makes flowers attractive to pollinators and repellant to florivores in nature. J. Integr. Plant Biol. 60, 190-194.
|
Li, X., Li, C., Shi, L., Lv, G., Li, X., Liu, Y., Jia, X., Liu, J., Chen, Y., Zhu, L., et al., 2024. Jasmonate signaling pathway confers salt tolerance through a NUCLEAR FACTOR-Y trimeric transcription factor complex in Arabidopsis. Cell Rep. 43, 113825.
|
Li, Z., Luo, X., Wang, L., Shu, K., 2022. ABSCISIC ACID INSENSITIVE 5 mediates light-ABA/gibberellin crosstalk networks during seed germination. J. Exp. Bot. 73, 4674-4682.
|
Liechti, R., Farmer, E.E., 2002. The jasmonate pathway. Science 296, 1649-1650.
|
Liu, B., Seong, K., Pang, S., Song, J., Gao, H., Wang, C., Zhai, J., Zhang, Y., Gao, S., Li, X., et al., 2021. Functional specificity, diversity, and redundancy of Arabidopsis JAZ family repressors in jasmonate and COI1-regulated growth, development, and defense. New Phytol. 231, 1525-1545.
|
Liu, Y., Du, M., Deng, L., Shen, J., Fang, M., Chen, Q., Lu, Y., Wang, Q., Li, C., Zhai, Q., 2019. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31, 106-127.
|
Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., Solano, R., 2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938-1950.
|
Lozano-Duran, R., Macho, A.P., Boutrot, F., Segonzac, C., Somssich, I.E., Zipfel, C., 2013. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. Elife 2, e00983.
|
Lunde, C., Kimberlin, A., Leiboff, S., Koo, A.J., Hake, S., 2019. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun. Biol. 2, 114.
|
Luo, M., Wang, D., Delaplace, P., Pan, Y., Zhou, Y., Tang, W., Chen, K., Chen, J., Xu, Z., Ma, Y., et al., 2023. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 202, 107974.
|
Machado, R.A., McClure, M., Herve, M.R., Baldwin, I.T., Erb, M., 2016. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. Elife 5, e13720.
|
Machado, R.A.R., Baldwin, I.T., Erb, M., 2017. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytol. 215, 803-812.
|
Major, I.T., Yoshida, Y., Campos, M.L., Kapali, G., Xin, X.F., Sugimoto, K., de Oliveira Ferreira, D., He, S.Y., Howe, G.A., 2017. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol. 215, 1533-1547.
|
Mao, D., Xin, Y., Tan, Y., Hu, X., Bai, J., Liu, Z.Y., Yu, Y., Li, L., Peng, C., Fan, T., et al., 2019. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc. Natl. Acad. Sci. U. S. A. 116, 3494-3501.
|
McConn, M., Browse, J., 1996. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell, 8, 403-416.
|
McGurl, B., Orozco-Cardenas, M., Pearce, G., Ryan, C.A., 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc. Natl. Acad. Sci. U. S. A. 91, 9799-9802.
|
McGurl, B., Pearce, G., Orozco-Cardenas, M., Ryan, C.A., 1992. Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255, 1570-1573.
|
Mehra, P., Pandey, B.K., Verma, L., Prusty, A., Singh, A.P., Sharma, S., Malik, N., Bennett, M.J., Parida, S.K., Giri, J., et al., 2022. OsJAZ11 regulates spikelet and seed development in rice. Plant Direct. 6, e401.
|
Mei, S., Zhang, M., Ye, J., Du, J., Jiang, Y., Hu, Y., 2023. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 35, 1110-1133.
|
Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., Zeng, W., Thines, B., Staswick, P., Browse, J., et al., 2008. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55, 979-988.
|
Ming, R., Zhang, Y., Wang, Y., Khan, M., Dahro, B., Liu, J.H., 2021. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytol. 229, 2730-2750.
|
Mohamed, H.I., Latif, H.H., 2017. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol. Mol. Biol. Plants 23, 545-556.
|
Monson, R.K., Trowbridge, A.M., Lindroth, R.L., Lerdau, M.T., 2022. Coordinated resource allocation to plant growth-defense tradeoffs. New Phytol. 233, 1051-1066.
|
Monte, I., Franco-Zorrilla, J.M., Garcia-Casado, G., Zamarreno, A.M., Garcia-Mina, J.M., Nishihama, R., Kohchi, T., Solano, R., 2019. A single JAZ repressor controls the jasmonate pathway in Marchantia polymorpha. Mol. Plant 12, 185-198.
|
Monte, I., Ishida, S., Zamarreno, A.M., Hamberg, M., Franco-Zorrilla, J.M., Garcia-Casado, G., Gouhier-Darimont, C., Reymond, P., Takahashi, K., Garcia-Mina, J.M., et al., 2018. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 14, 480-488.
|
Mousavi, S.R., Niknejad, Y., Fallah, H., Tari, D.B., 2020. Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep. 39, 1041-1060.
|
Moyen, C., Hammond-Kosack, K.E., Jones, J., Knight, M.R., Johannes, E., 1998. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant Cell Environ. 21, 1101-1111.
|
Nazir, F., Jahan, B., Iqbal, N., Rajurkar, A.B., Siddiqui, M.H., Khan, M.I.R., 2023. Methyl jasmonate influences ethylene formation, defense systems, nutrient homeostasis and carbohydrate metabolism to alleviate arsenic-induced stress in rice (Oryza sativa). Plant Physiol. Biochem. 202, 107990.
|
Ndecky, S., Nguyen, T.H., Eiche, E., Cognat, V., Pflieger, D., Pawar, N., Betting, F., Saha, S., Champion, A., Riemann, M., et al., 2023. Jasmonate signaling controls negative and positive effectors of salt stress tolerance in rice. J. Exp. Bot. 74, 3220-3239.
|
Niwa, T., Suzuki, T., Takebayashi, Y., Ishiguro, R., Higashiyama, T., Sakakibara, H., Ishiguro, S., 2018. Jasmonic acid facilitates flower opening and floral organ development through the upregulated expression of SlMYB21 transcription factor in tomato. Biosci. Biotechnol. Biochem. 82, 292-303.
|
Oka, K., Kobayashi, M., Mitsuhara, I., Seo, S., 2013. Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco. Plant Cell Physiol. 54, 1999-2010.
|
Pak, H., Guo, Y., Chen, M., Chen, K., Li, Y., Hua, S., Shamsi, I., Meng, H., Shi, C., Jiang, L., 2009. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Planta 231, 79-91.
|
Pak, H., Wang, H., Kim, Y., Song, U., Tu, M., Wu, D., Jiang, L., 2021. Creation of male-sterile lines that can be restored to fertility by exogenous methyl jasmonate for the establishment of a two-line system for the hybrid production of rice (Oryza sativa L.). Plant Biotechnol. J. 19, 365-374.
|
Pan, J., Hu, Y., Wang, H., Guo, Q., Chen, Y., Howe, G.A., Yu, D., 2020. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 32, 3846-3865.
|
Pan, J., Wang, H., You, Q., Cao, R., Sun, G., Yu, D., 2023. Jasmonate-regulated seed germination and crosstalk with other phytohormones. J. Exp. Bot. 74, 1162-1175.
|
Park, J.H., Halitschke, R., Kim, H.B., Baldwin, I.T., Feldmann, K.A., Feyereisen, R., 2002. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1-12.
|
Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Perez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., et al., 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788-791.
|
Pauwels, L., Goossens, A., 2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23, 3089-3100.
|
Pearce, G., Strydom, D., Johnson, S., Ryan, C.A., 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895-897.
|
Poss, Z.C., Ebmeier, C.C., Taatjes, D.J., 2013. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 48, 575-608.
|
Preston, J., Tatematsu, K., Kanno, Y., Hobo, T., Kimura, M., Jikumaru, Y., Yano, R., Kamiya, Y., Nambara, E., 2009. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol. 50, 1786-1800.
|
Qi, T., Huang, H., Song, S., Xie, D., 2015a. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27, 1620-1633.
|
Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., Xie, D., 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23, 1795-1814.
|
Qi, T., Wang, J., Huang, H., Liu, B., Gao, H., Liu, Y., Song, S., Xie, D., 2015b. Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27, 1634-1649.
|
Qi, X., Guo, S., Wang, D., Zhong, Y., Chen, M., Chen, C., Cheng, D., Liu, Z., An, T., Li, J., et al., 2022. ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize. Plant J. 110, 849-862.
|
Qiu, Z., Guo, J., Zhu, A., Zhang, L., Zhang, M., 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf. 104, 202-208.
|
Ryan, C.A., Pearce, G., 1998. Systemin: a polypeptide signal for plant defensive genes. Annu. Rev. Cell Dev. Biol. 14, 1-17.
|
Ryan, C.A., Pearce, G., 2003. Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. U. S. A. 100 Suppl 2, 14577-14580.
|
Salavati, J., Fallah, H., Niknejad, Y., Barari Tari, D., 2021. Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. Physiol. Mol. Biol. Plants 27, 1089-1104.
|
Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W., Goldberg, R.B., 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 1041-1061.
|
Scalschi, L., Sanmartin, M., Camanes, G., Troncho, P., Sanchez-Serrano, J.J., Garcia-Agustin, P., Vicedo, B., 2014. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. Plant J. 81, 304-315.
|
Schilmiller, A.L., Howe, G.A., 2005. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8, 369-377.
|
Schweizer, F., Fernandez-Calvo, P., Zander, M., Diez-Diaz, M., Fonseca, S., Glauser, G., Lewsey, M.G., Ecker, J.R., Solano, R., Reymond, P., 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25, 3117-3132.
|
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., et al., 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400-405.
|
Shu, K., Liu, X.D., Xie, Q., He, Z.H., 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Mol. Plant 9, 34-45.
|
Shyu, C., Figueroa, P., Depew, C.L., Cooke, T.F., Sheard, L.B., Moreno, J.E., Katsir, L., Zheng, N., Browse, J., Howe, G.A., 2012. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24, 536-550.
|
Singh, A.P., Mani, B., Giri, J., 2021. OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice. Plant Physiol. Biochem. 162, 161-170.
|
Song, S., Huang, H., Wang, J., Liu, B., Qi, T., Xie, D., 2017. MYC5 is involved in jasmonate-regulated plant growth, leaf senescence and defense responses. Plant Cell Physiol. 58, 1752-1763.
|
Song, S., Qi, T., Huang, H., Ren, Q., Wu, D., Chang, C., Peng, W., Liu, Y., Peng, J., Xie, D., 2011. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23, 1000-1013.
|
Soutourina, J., 2018. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262-274.
|
Staswick, P.E., Tiryaki, I., 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117-2127.
|
Stintzi, A., Browse, J., 2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. U. S. A. 97, 10625-10630.
|
Stintzi, A., Weber, H., Reymond, P., Browse, J., Farmer, E.E., 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. U. S. A. 98, 12837-12842.
|
Stitz, M., Hartl, M., Baldwin, I.T., Gaquerel, E., 2014. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). Plant Cell 26, 3964-3983.
|
Sun, J.Q., Jiang, H.L., Li, C.Y., 2011. Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4, 607-615.
|
Suzuki, G., Lucob-Agustin, N., Kashihara, K., Fujii, Y., Inukai, Y., Gomi, K., 2021. Rice MEDIATOR25, OsMED25, is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence. Plant Sci. 306, 110853.
|
Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N., 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645.
|
Tang, B., Tan, T., Chen, Y., Hu, Z., Xie, Q., Yu, X., Chen, G., 2022. SlJAZ10 and SlJAZ11 mediate dark-induced leaf senescence and regeneration. PLoS Genet. 18, e1010285.
|
Tani, T., Sobajima, H., Okada, K., Chujo, T., Arimura, S., Tsutsumi, N., Nishimura, M., Seto, H., Nojiri, H., Yamane, H., 2008. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227, 517-526.
|
Thaler, J.S., Owen, B., Higgins, V.J., 2004. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol. 135, 530-538.
|
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., Browse, J., 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448, 661-665.
|
Thireault, C., Shyu, C., Yoshida, Y., St Aubin, B., Campos, M.L., Howe, G.A., 2015. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J. 82, 669-679.
|
Tian, D., Tooker, J., Peiffer, M., Chung, S.H., Felton, G.W., 2012. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236, 1053-1066.
|
Tian, D., Traw, M.B., chen, Q., Kreitman, M., Bergelson, J., 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 70-74.
|
Traw, M.B., Bergelson, J., 2003. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 133, 1367-1375.
|
Uddin, M.R., Thwe, A.A., Kim, Y.B., Park, W.T., Chae, S.C., Park, S.U., 2013. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in Sorghum roots. J. Chem. Ecol. 39, 712-722.
|
Vanholme, B., Grunewald, W., Bateman, A., Kohchi, T., Gheysen, G., 2007. The tify family previously known as ZIM. Trends Plant Sci. 12, 239-244.
|
Varshney, V., Majee, M., 2021. JA shakes hands with ABA to delay seed germination. Trends Plant Sci. 26, 764-766.
|
Wang, F., Yuan, Z., Zhao, Z., Li, C., Zhang, X., Liang, H., Liu, Y., Xu, Q., Liu, H., 2020. Tasselseed5 encodes a cytochrome C oxidase that functions in sex determination by affecting jasmonate catabolism in maize. J. Integr. Plant Biol. 62, 247-255.
|
Wang, J., Wu, D., Wang, Y., Xie, D., 2019. Jasmonate action in plant defense against insects. J. Exp. Bot. 70, 3391-3400.
|
Wang, L., Chen, H., Chen, G., Luo, G., Shen, X., Ouyang, B., Bie, Z., 2024a. Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling. Plant Physiol. 194, 1075-1090.
|
Wang, L., Einig, E., Almeida-Trapp, M., Albert, M., Fliegmann, J., Mithofer, A., Kalbacher, H., Felix, G., 2018. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nat. Plants 4, 152-156.
|
Wang, L., Wu, B., Chen, G., Chen, H., Peng, Y., Sohail, H., Geng, S., Luo, G., Xu, D., Ouyang, B., et al., 2023. The essential role of jasmonate signaling in Solanum habrochaites rootstock-mediated cold tolerance in tomato grafts. Hortic. Res. 10, uhac227.
|
Wang, M., Zhu, X., Huang, Z., Chen, M., Xu, P., Liao, S., Zhao, Y., Gao, Y., He, J., Luo, Y., et al., 2024b. Controlling diurnal flower-opening time by manipulating the jasmonate pathway accelerates development of indica-japonica hybrid rice breeding. Plant Biotechnol. J. 22, 2267-2281.
|
Wasternack, C., Hause, B., 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021-1058.
|
Wu, F., Deng, L., Zhai, Q., Zhao, J., Chen, Q., Li, C., 2020. Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32, 429-448.
|
Wu, F., Sun, C., Zhu, Z., Deng, L., Yu, F., Xie, Q., Li, C., 2025. A multiprotein regulatory module, MED16-MBR1&2, controls MED25 homeostasis during jasmonate signaling. Nat. Commun. 16, 772.
|
Wu, H., Ye, H., Yao, R., Zhang, T., Xiong, L., 2015. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci. 232, 1-12.
|
Wu, S., Hu, C., Zhu, C., Fan, Y., Zhou, J., Xia, X., Shi, K., Zhou, Y., Foyer, C.H., Yu, J., 2024a. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. Mol. Plant 17, 598-613.
|
Wu, Y., Sun, Y., Wang, W., Xie, Z., Zhan, C., Jin, L., Huang, J., 2024b. OsJAZ10 negatively modulates the drought tolerance by integrating hormone signaling with systemic electrical activity in rice. Plant Physiol. Biochem. 211, 108683.
|
Xia, Y., Jiang, S., Wu, W., Du, K., Kang, X., 2024. MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar. New Phytol. 241, 2506-2522.
|
Xiao, Y., Chen, Y., Charnikhova, T., Mulder, P.P., Heijmans, J., Hoogenboom, A., Agalou, A., Michel, C., Morel, J.B., Dreni, L., et al., 2014. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. Plant Mol. Biol. 86, 19-33.
|
Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., Turner, J.G., 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091-1094.
|
Xie, K., Li, L., Zhang, H., Wang, R., Tan, X., He, Y., Hong, G., Li, J., Ming, F., Yao, X., et al., 2018. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant Cell Environ. 41, 2504-2514.
|
Xie, M., Zhang, J., Yao, T., Bryan, A.C., Pu, Y., Labbe, J., Pelletier, D.A., Engle, N., Morrell-Falvey, J.L., Schmutz, J., et al., 2020. Arabidopsis C-terminal binding protein ANGUSTIFOLIA modulates transcriptional co-regulation of MYB46 and WRKY33. New Phytol. 228, 1627-1639.
|
Xu, B.Q., Wang, J.J., Peng, Y., Huang, H., Sun, L.L., Yang, R., Suo, L.N., Wang, S.H., Zhao, W.C., 2022. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. Front. Plant Sci. 13, 952758.
|
Xu, L., Huang, H., 2014. Genetic and epigenetic controls of plant regeneration. Curr. Top Dev. Biol. 108, 1-33.
|
Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., Xie, D., 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919-1935.
|
Yan, C., Xie, D., 2015. Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol. J. 13, 1233-1240.
|
Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Luo, H., Nan, F., et al., 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220-2236.
|
Yan, L., Zhai, Q., Wei, J., Li, S., Wang, B., Huang, T., Du, M., Sun, J., Kang, L., Li, C., et al., 2013. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 9, e1003964.
|
Yan, T., Chen, M., Shen, Q., Li, L., Fu, X., Pan, Q., Tang, Y., Shi, P., Lv, Z., Jiang, W., et al., 2017. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytol. 213, 1145-1155.
|
Yan, X., Cui, L., Liu, X., Cui, Y., Wang, Z., Zhang, H., Chen, L., Cui, H., 2022. NbJAZ3 is required for jasmonate-meditated glandular trichome development in Nicotiana benthamiana. Physiol. Plant 174, e13666.
|
Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., Emery, R.J., Kolomiets, M.V., 2012. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24, 1420-1436.
|
Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., Farmer, E.E., 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470-2483.
|
Yan, Z., Zhang, W., Chen, J., Li, X., 2015. Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol. Plant 59, 373-381.
|
Yang, D.L., Yao, J., Mei, C.S., Tong, X.H., Zeng, L.J., Li, Q., Xiao, L.T., Sun, T.P., Li, J., Deng, X.W., et al., 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U. S. A. 109, E1192-1200.
|
Yang, T., Deng, L., Wang, Q., Sun, C., Ali, M., Wu, F., Zhai, H., Xu, Q., Xin, P., Cheng, S., et al., 2024a. Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. Mol. Plant 17, 509-512.
|
Yang, W., Zhai, H., Wu, F., Deng, L., Chao, Y., Meng, X., Chen, Q., Liu, C., Bie, X., Sun, C., et al., 2024b. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 187, 3024-3038 e3014.
|
Yang, Z., Huang, Y., Yang, J., Yao, S., Zhao, K., Wang, D., Qin, Q., Bian, Z., Li, Y., Lan, Y., et al., 2020. Jasmonate signaling enhances RNA silencing and antiviral defense in rice. Cell Host Microbe 28, 89-103 e108.
|
Yoon, J.Y., Hamayun, M., Lee, S.-K., Lee, I.-J., 2009. Methyl jasmonate alleviated salinity stress in soybean. J. Crop Sci. Biotechnol. 12, 63-68.
|
You, X., Zhu, S., Zhang, W., Zhang, J., Wang, C., Jing, R., Chen, W., Wu, H., Cai, Y., Feng, Z., et al., 2019a. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytol. 224, 712-724.
|
You, Y., Zhai, Q., An, C., Li, C., 2019b. LEUNIG_HOMOLOG mediates MYC2-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31, 2187-2205.
|
Yu, J., Zhang, Y., Di, C., Zhang, Q., Zhang, K., Wang, C., You, Q., Yan, H., Dai, S.Y., Yuan, J.S., et al., 2016. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. J. Exp. Bot. 67, 751-762.
|
Yu, L.J., Luo, Y.F., Liao, B., Xie, L.J., Chen, L., Xiao, S., Li, J.T., Hu, S.N., Shu, W.S., 2012. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol. 195, 97-112.
|
Yu, X., Chen, G., Tang, B., Zhang, J., Zhou, S., Hu, Z., 2018. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. Plant Sci. 267, 65-73.
|
Zeng, X., Zhou, X., Zhang, W., Murofushi, N., Kitahara, T., Kamuro, Y., 1999. Opening of rice floret in rapid response to methyl jasmonate. J. Plant Growth Regul. 18, 153-158.
|
Zhai, Q., Deng, L., Li, C., 2020. Mediator subunit MED25: at the nexus of jasmonate signaling. Curr. Opin. Plant Biol. 57, 78-86.
|
Zhai, Q., Li, C., 2019. The plant Mediator complex and its role in jasmonate signaling. J. Exp. Bot. 70, 3415-3424.
|
Zhai, Q., Yan, C., Li, L., Xie, D., Li, C., 2017. Jasmonates. In Hormone metabolism and signaling in plants, pp. 243–272.
|
Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M.Q., Wang, Y., Li, C., 2013. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9, e1003422.
|
Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., Zhang, M., Wang, Q., Li, C., 2015. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27, 2814-2828.
|
Zhang, B., Wu, S., Zhang, Y., Xu, T., Guo, F., Tang, H., Li, X., Wang, P., Qian, W., Xue, Y., 2016. A high temperature-dependent mitochondrial lipase EXTRA GLUME1 promotes floral phenotypic robustness against temperature fluctuation in rice (Oryza sativa L.). PLoS Genet. 12, e1006152.
|
Zhang, F., Ke, J., Zhang, L., Chen, R., Sugimoto, K., Howe, G.A., Xu, H.E., Zhou, M., He, S.Y., Melcher, K., 2017. Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proc. Natl. Acad. Sci. U. S. A. 114, 1720-1725.
|
Zhang, F., Yao, J., Ke, J., Zhang, L., Lam, V.Q., Xin, X.F., Zhou, X.E., Chen, J., Brunzelle, J., Griffin, P.R., et al., 2015. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525, 269-273.
|
Zhang, G., Liu, W., Gu, Z., Wu, S., E, Y., Zhou, W., Lin, J., Xu, L., 2023. Roles of the wound hormone jasmonate in plant regeneration. J. Exp. Bot. 74, 1198-1206.
|
Zhang, G., Zhao, F., Chen, L., Pan, Y., Sun, L., Bao, N., Zhang, T., Cui, C.X., Qiu, Z., Zhang, Y., et al., 2019. Jasmonate-mediated wound signalling promotes plant regeneration. Nat. Plants 5, 491-497.
|
Zhang, H., Zhang, H., Lin, J., 2020. Systemin-mediated long-distance systemic defense responses. New Phytol. 226, 1573-1582.
|
Zhao, P., Yang, H., Sun, Y., Zhang, J., Gao, K., Wu, J., Zhu, C., Yin, C., Chen, X., Liu, Q., et al., 2025. Targeted MYC2 stabilization confers citrus Huanglongbing resistance. Science 388, 191-198.
|
Zhao, Y., Dong, W., Zhang, N., Ai, X., Wang, M., Huang, Z., Xiao, L., Xia, G., 2014. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol. 164, 1068-1076.
|
Zheng, W., Zhai, Q., Sun, J., Li, C.B., Zhang, L., Li, H., Zhang, X., Li, S., Xu, Y., Jiang, H., et al., 2006. Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol. 141, 1400-1413.
|
Zhou, K., Wu, F., Deng, L., Xiao, Y., Yang, W., Zhao, J., Wang, Q., Chang, Z., Zhai, H., Sun, C., et al., 2024. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev. Cell 60, 535-550.e8.
|
Zhou, W., Brockmoller, T., Ling, Z., Omdahl, A., Baldwin, I.T., Xu, S., 2016. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana. Elife 5, e19531.
|
Zhou, W., Lozano-Torres, J.L., Blilou, I., Zhang, X., Zhai, Q., Smant, G., Li, C., Scheres, B., 2019. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177, 942-956.e914.
|
Zhu, C., Gan, L., Shen, Z., Xia, K., 2006. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J. Exp. Bot. 57, 1299-1308.
|
Zhu, X., Chen, J., Xie, Z., Gao, J., Ren, G., Gao, S., Zhou, X., Kuai, B., 2015. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes. Plant J. 84, 597-610.
|
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.M., To, T.K., Li, W., et al., 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 12539-12544.
|
Zou, J., Chen, X., Liu, C., Guo, M., Kanwar, M.K., Qi, Z., Yang, P., Wang, G., Bao, Y., Bassham, D.C., et al., 2023. Autophagy promotes jasmonate-mediated defense against nematodes. Nat. Commun. 14, 4769.
|