9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Jasmonate signaling: integrating stress responses with developmental regulation in plants

doi: 10.1016/j.jgg.2025.07.007
Funds:

We apologize to any authors whose work has not been cited due to space constraints. This work was supported by the National Natural Science Foundation of China (32370332 and 32202481) and the Natural Science Foundation of Hainan Province (325RC839).

  • Received Date: 2025-04-23
  • Accepted Date: 2025-07-15
  • Rev Recd Date: 2025-07-14
  • Available Online: 2025-07-21
  • Jasmonates (JAs) are essential phytohormones that coordinate plant defense and development in response to unpredictable environments. Recent scientific advances have highlighted the SCFCOI1-JAZ-MYC2-MED25 module as a central hub for JA signaling, orchestrating transcriptional repression, derepression, activation, amplification, and feedback termination. This review summarizes current insights into the roles of JA in the regulation of biotic and abiotic stress responses and agronomic traits, including root development, regeneration, fertility, flowering, leaf senescence, and seed development, with a particular emphasis on the crosstalk between JA and a wound-induced peptide hormone, systemin, which mediates systemic wound responses. A deeper understanding of the JA regulatory mechanisms will provide valuable strategies for engineering crops with enhanced stress resilience and improved yields. We further propose JA-based strategies as a promising avenue for crop improvement.
  • loading
  • Abdelgawad, Z.A., Khalafaallah, A.A., Abdallah, M.M., 2014. Impact of methyl jasmonate on antioxidant activity and some biochemical aspects of maize plant grown under water stress condition. Agricul. Sci. 05, 1077-1088.
    Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78.
    Acosta, I.F., Laparra, H., Romero, S.P., Schmelz, E., Hamberg, M., Mottinger, J.P., Moreno, M.A., Dellaporta, S.L., 2009. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323, 262-265.
    An, C., Deng, L., Zhai, H., You, Y., Wu, F., Zhai, Q., Goossens, A., Li, C., 2022. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol. Plant 15, 1329-1346.
    An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., Chen, R., Jiang, H., Wang, H., Chen, Q., et al., 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc. Natl. Acad. Sci. U. S. A. 114, E8930-E8939.
    An, J.P., Wang, X.F., Zhang, X.W., You, C.X., Hao, Y.J., 2021. Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation. New Phytol. 229, 2707-2729.
    Attaran, E., Major, I.T., Cruz, J.A., Rosa, B.A., Koo, A.J., Chen, J., Kramer, D.M., He, S.Y., Howe, G.A., 2014. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol. 165, 1302-1314.
    Azeem, U., 2018. Ameliorating nickel stress by jasmonic acid treatment in Zea mays L. Russ. Agric. Sci. 44, 209-215.
    Backstrom, S., Elfving, N., Nilsson, R., Wingsle, G., Bjorklund, S., 2007. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717-729.
    Ballare, C.L., 2014. Light regulation of plant defense. Annu. Rev. Plant Biol. 65, 335-363.
    Berger, B., Baldwin, I.T., 2007. The hydroxyproline-rich glycopeptide systemin precursor NapreproHypSys does not play a central role in Nicotiana attenuata's anti-herbivore defense responses. Plant Cell Environ. 30, 1450-1464.
    Boter, M., Ruiz-Rivero, O., Abdeen, A., Prat, S., 2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18, 1577-1591.
    Bu, Q., Jiang, H., Li, C.B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., Li, C., 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 18, 756-767.
    Cabot, C., Gallego, B., Martos, S., Barcelo, J., Poschenrieder, C., 2013. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 237, 337-349.
    Cai, Q., Yuan, Z., Chen, M., Yin, C., Luo, Z., Zhao, X., Liang, W., Hu, J., Zhang, D., 2014. Jasmonic acid regulates spikelet development in rice. Nat. Commun. 5, 3476.
    Caldelari, D., Wang, G., Farmer, E.E., Dong, X., 2011. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol. Biol. 75, 25-33.
    Campos, M.L., Kang, J.H., Howe, G.A., 2014. Jasmonate-triggered plant immunity. J. Chem. Ecol. 40, 657-675.
    Campos, M.L., Yoshida, Y., Major, I.T., de Oliveira Ferreira, D., Weraduwage, S.M., Froehlich, J.E., Johnson, B.F., Kramer, D.M., Jander, G., Sharkey, T.D., et al., 2016. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 7, 12570.
    Cao, L., Liu, L., Zhang, C., Ren, W., Zheng, J., Tao, C., Zhu, W., Xiang, M., Wang, L., Liu, Y., et al., 2024. The MYC2 and MYB43 transcription factors cooperate to repress HMA2 and HMA4 expression, altering cadmium tolerance in Arabidopsis thaliana. J. Hazard Mater. 479, 135703.
    Cao, L., Tian, J., Liu, Y., Chen, X., Li, S., Persson, S., Lu, D., Chen, M., Luo, Z., Zhang, D., et al., 2021. Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. Plant J. 108, 1083-1096.
    Cerdan, P.D., Chory, J., 2003. Regulation of flowering time by light quality. Nature 423, 881-885.
    Cevik, V., Kidd, B.N., Zhang, P., Hill, C., Kiddle, S., Denby, K.J., Holub, E.B., Cahill, D.M., Manners, J.M., Schenk, P.M., et al., 2012. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol. 160, 541-555.
    Chen, H., Gonzales-Vigil, E., Wilkerson, C.G., Howe, G.A., 2007. Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol. 143, 1954-1967.
    Chen, H., Wilkerson, C.G., Kuchar, J.A., Phinney, B.S., Howe, G.A., 2005. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc. Natl. Acad. Sci. U. S. A. 102, 19237-19242.
    Chen, Q., Sun, J., Zhai, Q., Zhou, W., Qi, L., Xu, L., Wang, B., Chen, R., Jiang, H., Qi, J., et al., 2011. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23, 3335-3352.
    Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Li, H., Zheng, W., Sun, J., et al., 2012. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24, 2898-2916.
    Chico, J.M., Lechner, E., Fernandez-Barbero, G., Canibano, E., Garcia-Casado, G., Franco-Zorrilla, J.M., Hammann, P., Zamarreno, A.M., Garcia-Mina, J.M., Rubio, V., et al., 2020. CUL3BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proc. Natl. Acad. Sci. U. S. A. 117, 6205-6215.
    Chini, A., Fonseca, S., Chico, J.M., Fernandez-Calvo, P., Solano, R., 2009. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 59, 77-87.
    Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., et al., 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671.
    Chung, H.S., Howe, G.A., 2009. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21, 131-145.
    Chung, H.S., Koo, A.J., Gao, X., Jayanty, S., Thines, B., Jones, A.D., Howe, G.A., 2008. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol. 146, 952-964.
    Dathe, W., Ronsch, H., Preiss, A., Schade, W., Sembdner, G., and Schreiber, K., 1981. Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153, 530-535.
    Dave, A., Hernandez, M.L., He, Z., Andriotis, V.M., Vaistij, F.E., Larson, T.R., Graham, I.A., 2011. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23, 583-599.
    Dave, A., Vaistij, F.E., Gilday, A.D., Penfield, S.D., Graham, I.A., 2016. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. J. Exp. Bot. 67, 2277-2284.
    De Geyter, N., Gholami, A., Goormachtig, S., Goossens, A., 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 17, 349-359.
    De Vleesschauwer, D., Filipe, O., Hoffman, G., Seifi, H.S., Haeck, A., Canlas, P., Van Bockhaven, J., De Waele, E., Demeestere, K., Ronald, P., et al., 2018. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. New Phytol. 217, 305-319.
    Delfin, J.C., Kanno, Y., Seo, M., Kitaoka, N., Matsuura, H., Tohge, T., Shimizu, T., 2022. AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana. Plant J. 110, 1082-1096.
    Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., Turner, J.G., 2002. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457-466.
    Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., et al., 2007. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225-2245.
    Dong, K., Wu, F., Cheng, S., Li, S., Zhang, F., Xing, X., Jin, X., Luo, S., Feng, M., Miao, R., et al., 2024. OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice. Mol. Plant 17, 900-919.
    Dong, W., Wang, M., Xu, F., Quan, T., Peng, K., Xiao, L., Xia, G., 2013. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol. 161, 1217-1228.
    Dong, X., 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1, 316-323.
    Du, M., Zhao, J., Tzeng, D.T.W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., et al., 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29, 1883-1906.
    Efimova, M.V., Mukhamatdinova, E.A., Kovtun, I.S., Kabil, F.F., Medvedeva, Y.V., Kuznetsov, V.V., 2019. Jasmonic acid enhances the potato plant resistance to the salt stress in vitro. Dokl. Biol. Sci. 488, 149-152.
    El Oirdi, M., El Rahman, T.A., Rigano, L., El Hadrami, A., Rodriguez, M.C., Daayf, F., Vojnov, A., Bouarab, K., 2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23, 2405-2421.
    Elfving, N., Davoine, C., Benlloch, R., Blomberg, J., Brannstrom, K., Muller, D., Nilsson, A., Ulfstedt, M., Ronne, H., Wingsle, G., et al., 2011. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc. Natl. Acad. Sci. U. S. A. 108, 8245-8250.
    Farmer, E.E., Ryan, C.A., 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U. S. A. 87, 7713-7716.
    Feys, B., Benedetti, C.E., Penfold, C.N., Turner, J.G., 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751-759.
    Fu, J., Wu, H., Ma, S., Xiang, D., Liu, R., Xiong, L., 2017. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front. Plant Sci. 8, 2108.
    Glauser, G., Dubugnon, L., Mousavi, S.A., Rudaz, S., Wolfender, J.L., Farmer, E.E., 2009. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J. Biol. Chem. 284, 34506-34513.
    Goetz, S., Hellwege, A., Stenzel, I., Kutter, C., Hauptmann, V., Forner, S., McCaig, B., Hause, G., Miersch, O., Wasternack, C., et al., 2012. Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiol. 158, 1715-1727.
    Green, T.R., Ryan, C.A., 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175, 776-777.
    Guan, Y., Ding, L., Jiang, J., Shentu, Y., Zhao, W., Zhao, K., Zhang, X., Song, A., Chen, S., Chen, F., 2021. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium. Hortic. Res. 8, 87.
    Guo, Q., Major, I.T., Howe, G.A., 2018a. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. Curr. Opin. Plant Biol. 44, 72-81.
    Guo, Q., Yoshida, Y., Major, I.T., Wang, K., Sugimoto, K., Kapali, G., Havko, N.E., Benning, C., Howe, G.A., 2018b. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 115, E10768-E10777.
    Han, X., Zhang, M., Yang, M., Hu, Y., 2020. Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development. Plant Cell 32, 1049-1062.
    Handley, R., Ekbom, B., Agren, J., 2005. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol. Entomol. 30, 284-292.
    Havko, N.E., Major, I.T., Jewell, J.B., Attaran, E., Browse, J., Howe, G.A., 2016. Control of carbon assimilation and partitioning by jasmonate: an accounting of growth-defense tradeoffs. Plants (Basel) 5, 7.
    Hayward, A.P., Moreno, M.A., Howard, T.P., 3rd, Hague, J., Nelson, K., Heffelfinger, C., Romero, S., Kausch, A.P., Glauser, G., Acosta, I.F., et al., 2016. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Sci. Adv. 2, e1600991.
    He, Y., Fukushige, H., Hildebrand, D.F., Gan, S., 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876-884.
    He, Y., Zhang, H., Sun, Z., Li, J., Hong, G., Zhu, Q., Zhou, X., MacFarlane, S., Yan, F., Chen, J., 2017. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice. New Phytol. 214, 388-399.
    Heil, M., Baldwin, I.T., 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61-67.
    Hori, Y., Kurotani, K., Toda, Y., Hattori, T., Takeda, S., 2014. Overexpression of the JAZ factors with mutated jas domains causes pleiotropic defects in rice spikelet development. Plant Signal Behav. 9, e970414.
    Howe, G.A., Jander, G., 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41-66.
    Howe, G.A., Ryan, C.A., 1999. Suppressors of systemin signaling identify genes in the tomato wound response pathway. Genetics 153, 1411-1421.
    Hu, P., Zhou, W., Cheng, Z., Fan, M., Wang, L., Xie, D., 2013a. JAV1 controls jasmonate-regulated plant defense. Mol. Cell 50, 504-515.
    Hu, S., Yang, H., Gao, H., Yan, J., Xie, D., 2021. Control of seed size by jasmonate. Sci. China Life Sci. 64, 1215-1226.
    Hu, Y., Jiang, L., Wang, F., Yu, D., 2013b. Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907-2924.
    Hu, Y., Liu, Y., Tao, J.J., Lu, L., Jiang, Z.H., Wei, J.J., Wu, C.M., Yin, C.C., Li, W., Bi, Y.D., et al., 2023. GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean. J. Integr. Plant Biol. 65, 1983-2000.
    Hua, B., Chang, J., Xu, Z., Han, X., Xu, M., Yang, M., Yang, C., Ye, Z., Wu, S., 2021. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytol. 230, 1063-1077.
    Huang, H., Chen, Y., Wang, S., Qi, T., Song, S., 2023. Jasmonate action and crosstalk in flower development and fertility. J. Exp. Bot. 74, 1186-1197.
    Huang, Y., Yang, J., Sun, X., Li, J., Cao, X., Yao, S., Han, Y., Chen, C., Du, L., Li, S., et al., 2025. Perception of viral infections and initiation of antiviral defence in rice. Nature 641, 173-181.
    Huffaker, A., Pearce, G., Ryan, C.A., 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. U. S. A. 103, 10098-10103.
    Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K., 2001. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13, 2191-2209.
    Jiang, Y., Liang, G., Yang, S., Yu, D., 2014. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26, 230-245.
    Ju, L., Jing, Y., Shi, P., Liu, J., Chen, J., Yan, J., Chu, J., Chen, K.M., Sun, J., 2019. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. New Phytol. 223, 246-260.
    Jung, C., Zhao, P., Seo, J.S., Mitsuda, N., Deng, S., Chua, N.H., 2015. PLANT U-BOX PROTEIN10 regulates MYC2 stability in Arabidopsis. Plant Cell 27, 2016-2031.
    Kang, J.H., Liu, G., Shi, F., Jones, A.D., Beaudry, R.M., Howe, G.A., 2010. The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol. 154, 262-272.
    Kazan, K., Manners, J.M., 2013. MYC2: the master in action. Mol. Plant 6, 686-703.
    Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M., Kazan, K., 2009. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21, 2237-2252.
    Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., Xu, W., Liu, J., Shani, E., Fu, C., et al., 2018. PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Rep. 22, 1350-1363.
    Lee, H.Y., Seo, J.S., Cho, J.H., Jung, H., Kim, J.K., Lee, J.S., Rhee, S., Do Choi, Y., 2013. Oryza sativa COI homologues restore jasmonate signal transduction in Arabidopsis coi1-1 mutants. PLoS One 8, e52802.
    Lee, K., Yoon, H., Park, O.S., Seo, P.J., 2024. ENHANCER OF SHOOT REGENERATION1 promotes de novo root organogenesis after wounding in Arabidopsis leaf explants. Plant Cell 36, 2359-2374.
    Lei, G.J., Sun, L., Sun, Y., Zhu, X.F., Li, G.X., Zheng, S.J., 2020. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J. Integr. Plant Biol. 62, 218-227.
    Li, C., Liu, G., Xu, C., Lee, G.I., Bauer, P., Ling, H.Q., Ganal, M.W., Howe, G.A., 2003. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15, 1646-1661.
    Li, C., Zhao, J., Jiang, H., Wu, X., Sun, J., Zhang, C., Wang, X., Lou, Y., Li, C., 2006. The wound response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1). Plant Cell Physiol. 47, 653-663.
    Li, H., Xue, D., Gao, Z., Yan, M., Xu, W., Xing, Z., Huang, D., Qian, Q., Xue, Y., 2009. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J. 57, 593-605.
    Li, L., Li, C., Lee, G.I., Howe, G.A., 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. U. S. A. 99, 6416-6421.
    Li, L., Zhao, Y., McCaig, B.C., Wingerd, B.A., Wang, J., Whalon, M.E., Pichersky, E., Howe, G.A., 2004. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[W]. Plant Cell 16, 126-143.
    Li, M., Yu, G., Cao, C., Liu, P., 2021. Metabolism, signaling, and transport of jasmonates. Plant Commun. 2, 100231.
    Li, R., Schuman, M.C., Wang, Y., Llorca, L.C., Bing, J., Bennion, A., Halitschke, R., Baldwin, I.T., 2018. Jasmonate signaling makes flowers attractive to pollinators and repellant to florivores in nature. J. Integr. Plant Biol. 60, 190-194.
    Li, X., Li, C., Shi, L., Lv, G., Li, X., Liu, Y., Jia, X., Liu, J., Chen, Y., Zhu, L., et al., 2024. Jasmonate signaling pathway confers salt tolerance through a NUCLEAR FACTOR-Y trimeric transcription factor complex in Arabidopsis. Cell Rep. 43, 113825.
    Li, Z., Luo, X., Wang, L., Shu, K., 2022. ABSCISIC ACID INSENSITIVE 5 mediates light-ABA/gibberellin crosstalk networks during seed germination. J. Exp. Bot. 73, 4674-4682.
    Liechti, R., Farmer, E.E., 2002. The jasmonate pathway. Science 296, 1649-1650.
    Liu, B., Seong, K., Pang, S., Song, J., Gao, H., Wang, C., Zhai, J., Zhang, Y., Gao, S., Li, X., et al., 2021. Functional specificity, diversity, and redundancy of Arabidopsis JAZ family repressors in jasmonate and COI1-regulated growth, development, and defense. New Phytol. 231, 1525-1545.
    Liu, Y., Du, M., Deng, L., Shen, J., Fang, M., Chen, Q., Lu, Y., Wang, Q., Li, C., Zhai, Q., 2019. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31, 106-127.
    Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., Solano, R., 2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938-1950.
    Lozano-Duran, R., Macho, A.P., Boutrot, F., Segonzac, C., Somssich, I.E., Zipfel, C., 2013. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. Elife 2, e00983.
    Lunde, C., Kimberlin, A., Leiboff, S., Koo, A.J., Hake, S., 2019. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Commun. Biol. 2, 114.
    Luo, M., Wang, D., Delaplace, P., Pan, Y., Zhou, Y., Tang, W., Chen, K., Chen, J., Xu, Z., Ma, Y., et al., 2023. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 202, 107974.
    Machado, R.A., McClure, M., Herve, M.R., Baldwin, I.T., Erb, M., 2016. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. Elife 5, e13720.
    Machado, R.A.R., Baldwin, I.T., Erb, M., 2017. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytol. 215, 803-812.
    Major, I.T., Yoshida, Y., Campos, M.L., Kapali, G., Xin, X.F., Sugimoto, K., de Oliveira Ferreira, D., He, S.Y., Howe, G.A., 2017. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol. 215, 1533-1547.
    Mao, D., Xin, Y., Tan, Y., Hu, X., Bai, J., Liu, Z.Y., Yu, Y., Li, L., Peng, C., Fan, T., et al., 2019. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc. Natl. Acad. Sci. U. S. A. 116, 3494-3501.
    McConn, M., Browse, J., 1996. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell, 8, 403-416.
    McGurl, B., Orozco-Cardenas, M., Pearce, G., Ryan, C.A., 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc. Natl. Acad. Sci. U. S. A. 91, 9799-9802.
    McGurl, B., Pearce, G., Orozco-Cardenas, M., Ryan, C.A., 1992. Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255, 1570-1573.
    Mehra, P., Pandey, B.K., Verma, L., Prusty, A., Singh, A.P., Sharma, S., Malik, N., Bennett, M.J., Parida, S.K., Giri, J., et al., 2022. OsJAZ11 regulates spikelet and seed development in rice. Plant Direct. 6, e401.
    Mei, S., Zhang, M., Ye, J., Du, J., Jiang, Y., Hu, Y., 2023. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 35, 1110-1133.
    Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., Zeng, W., Thines, B., Staswick, P., Browse, J., et al., 2008. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55, 979-988.
    Ming, R., Zhang, Y., Wang, Y., Khan, M., Dahro, B., Liu, J.H., 2021. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytol. 229, 2730-2750.
    Mohamed, H.I., Latif, H.H., 2017. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol. Mol. Biol. Plants 23, 545-556.
    Monson, R.K., Trowbridge, A.M., Lindroth, R.L., Lerdau, M.T., 2022. Coordinated resource allocation to plant growth-defense tradeoffs. New Phytol. 233, 1051-1066.
    Monte, I., Franco-Zorrilla, J.M., Garcia-Casado, G., Zamarreno, A.M., Garcia-Mina, J.M., Nishihama, R., Kohchi, T., Solano, R., 2019. A single JAZ repressor controls the jasmonate pathway in Marchantia polymorpha. Mol. Plant 12, 185-198.
    Monte, I., Ishida, S., Zamarreno, A.M., Hamberg, M., Franco-Zorrilla, J.M., Garcia-Casado, G., Gouhier-Darimont, C., Reymond, P., Takahashi, K., Garcia-Mina, J.M., et al., 2018. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 14, 480-488.
    Mousavi, S.R., Niknejad, Y., Fallah, H., Tari, D.B., 2020. Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep. 39, 1041-1060.
    Moyen, C., Hammond-Kosack, K.E., Jones, J., Knight, M.R., Johannes, E., 1998. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extracellular compartments. Plant Cell Environ. 21, 1101-1111.
    Nazir, F., Jahan, B., Iqbal, N., Rajurkar, A.B., Siddiqui, M.H., Khan, M.I.R., 2023. Methyl jasmonate influences ethylene formation, defense systems, nutrient homeostasis and carbohydrate metabolism to alleviate arsenic-induced stress in rice (Oryza sativa). Plant Physiol. Biochem. 202, 107990.
    Ndecky, S., Nguyen, T.H., Eiche, E., Cognat, V., Pflieger, D., Pawar, N., Betting, F., Saha, S., Champion, A., Riemann, M., et al., 2023. Jasmonate signaling controls negative and positive effectors of salt stress tolerance in rice. J. Exp. Bot. 74, 3220-3239.
    Niwa, T., Suzuki, T., Takebayashi, Y., Ishiguro, R., Higashiyama, T., Sakakibara, H., Ishiguro, S., 2018. Jasmonic acid facilitates flower opening and floral organ development through the upregulated expression of SlMYB21 transcription factor in tomato. Biosci. Biotechnol. Biochem. 82, 292-303.
    Oka, K., Kobayashi, M., Mitsuhara, I., Seo, S., 2013. Jasmonic acid negatively regulates resistance to Tobacco mosaic virus in tobacco. Plant Cell Physiol. 54, 1999-2010.
    Pak, H., Guo, Y., Chen, M., Chen, K., Li, Y., Hua, S., Shamsi, I., Meng, H., Shi, C., Jiang, L., 2009. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Planta 231, 79-91.
    Pak, H., Wang, H., Kim, Y., Song, U., Tu, M., Wu, D., Jiang, L., 2021. Creation of male-sterile lines that can be restored to fertility by exogenous methyl jasmonate for the establishment of a two-line system for the hybrid production of rice (Oryza sativa L.). Plant Biotechnol. J. 19, 365-374.
    Pan, J., Hu, Y., Wang, H., Guo, Q., Chen, Y., Howe, G.A., Yu, D., 2020. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 32, 3846-3865.
    Pan, J., Wang, H., You, Q., Cao, R., Sun, G., Yu, D., 2023. Jasmonate-regulated seed germination and crosstalk with other phytohormones. J. Exp. Bot. 74, 1162-1175.
    Park, J.H., Halitschke, R., Kim, H.B., Baldwin, I.T., Feldmann, K.A., Feyereisen, R., 2002. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1-12.
    Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Perez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., et al., 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788-791.
    Pauwels, L., Goossens, A., 2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23, 3089-3100.
    Pearce, G., Strydom, D., Johnson, S., Ryan, C.A., 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895-897.
    Poss, Z.C., Ebmeier, C.C., Taatjes, D.J., 2013. The Mediator complex and transcription regulation. Crit. Rev. Biochem. Mol. Biol. 48, 575-608.
    Preston, J., Tatematsu, K., Kanno, Y., Hobo, T., Kimura, M., Jikumaru, Y., Yano, R., Kamiya, Y., Nambara, E., 2009. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol. 50, 1786-1800.
    Qi, T., Huang, H., Song, S., Xie, D., 2015a. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27, 1620-1633.
    Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., Xie, D., 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23, 1795-1814.
    Qi, T., Wang, J., Huang, H., Liu, B., Gao, H., Liu, Y., Song, S., Xie, D., 2015b. Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27, 1634-1649.
    Qi, X., Guo, S., Wang, D., Zhong, Y., Chen, M., Chen, C., Cheng, D., Liu, Z., An, T., Li, J., et al., 2022. ZmCOI2a and ZmCOI2b redundantly regulate anther dehiscence and gametophytic male fertility in maize. Plant J. 110, 849-862.
    Qiu, Z., Guo, J., Zhu, A., Zhang, L., Zhang, M., 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf. 104, 202-208.
    Ryan, C.A., Pearce, G., 1998. Systemin: a polypeptide signal for plant defensive genes. Annu. Rev. Cell Dev. Biol. 14, 1-17.
    Ryan, C.A., Pearce, G., 2003. Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. U. S. A. 100 Suppl 2, 14577-14580.
    Salavati, J., Fallah, H., Niknejad, Y., Barari Tari, D., 2021. Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. Physiol. Mol. Biol. Plants 27, 1089-1104.
    Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W., Goldberg, R.B., 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 1041-1061.
    Scalschi, L., Sanmartin, M., Camanes, G., Troncho, P., Sanchez-Serrano, J.J., Garcia-Agustin, P., Vicedo, B., 2014. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. Plant J. 81, 304-315.
    Schilmiller, A.L., Howe, G.A., 2005. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8, 369-377.
    Schweizer, F., Fernandez-Calvo, P., Zander, M., Diez-Diaz, M., Fonseca, S., Glauser, G., Lewsey, M.G., Ecker, J.R., Solano, R., Reymond, P., 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25, 3117-3132.
    Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.F., Sharon, M., Browse, J., et al., 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400-405.
    Shu, K., Liu, X.D., Xie, Q., He, Z.H., 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Mol. Plant 9, 34-45.
    Shyu, C., Figueroa, P., Depew, C.L., Cooke, T.F., Sheard, L.B., Moreno, J.E., Katsir, L., Zheng, N., Browse, J., Howe, G.A., 2012. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24, 536-550.
    Singh, A.P., Mani, B., Giri, J., 2021. OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice. Plant Physiol. Biochem. 162, 161-170.
    Song, S., Huang, H., Wang, J., Liu, B., Qi, T., Xie, D., 2017. MYC5 is involved in jasmonate-regulated plant growth, leaf senescence and defense responses. Plant Cell Physiol. 58, 1752-1763.
    Song, S., Qi, T., Huang, H., Ren, Q., Wu, D., Chang, C., Peng, W., Liu, Y., Peng, J., Xie, D., 2011. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23, 1000-1013.
    Soutourina, J., 2018. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262-274.
    Staswick, P.E., Tiryaki, I., 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117-2127.
    Stintzi, A., Browse, J., 2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. U. S. A. 97, 10625-10630.
    Stintzi, A., Weber, H., Reymond, P., Browse, J., Farmer, E.E., 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. U. S. A. 98, 12837-12842.
    Stitz, M., Hartl, M., Baldwin, I.T., Gaquerel, E., 2014. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). Plant Cell 26, 3964-3983.
    Sun, J.Q., Jiang, H.L., Li, C.Y., 2011. Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4, 607-615.
    Suzuki, G., Lucob-Agustin, N., Kashihara, K., Fujii, Y., Inukai, Y., Gomi, K., 2021. Rice MEDIATOR25, OsMED25, is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence. Plant Sci. 306, 110853.
    Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N., 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645.
    Tang, B., Tan, T., Chen, Y., Hu, Z., Xie, Q., Yu, X., Chen, G., 2022. SlJAZ10 and SlJAZ11 mediate dark-induced leaf senescence and regeneration. PLoS Genet. 18, e1010285.
    Tani, T., Sobajima, H., Okada, K., Chujo, T., Arimura, S., Tsutsumi, N., Nishimura, M., Seto, H., Nojiri, H., Yamane, H., 2008. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227, 517-526.
    Thaler, J.S., Owen, B., Higgins, V.J., 2004. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol. 135, 530-538.
    Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., Browse, J., 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448, 661-665.
    Thireault, C., Shyu, C., Yoshida, Y., St Aubin, B., Campos, M.L., Howe, G.A., 2015. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J. 82, 669-679.
    Tian, D., Tooker, J., Peiffer, M., Chung, S.H., Felton, G.W., 2012. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236, 1053-1066.
    Tian, D., Traw, M.B., chen, Q., Kreitman, M., Bergelson, J., 2003. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 70-74.
    Traw, M.B., Bergelson, J., 2003. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 133, 1367-1375.
    Uddin, M.R., Thwe, A.A., Kim, Y.B., Park, W.T., Chae, S.C., Park, S.U., 2013. Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in Sorghum roots. J. Chem. Ecol. 39, 712-722.
    Vanholme, B., Grunewald, W., Bateman, A., Kohchi, T., Gheysen, G., 2007. The tify family previously known as ZIM. Trends Plant Sci. 12, 239-244.
    Varshney, V., Majee, M., 2021. JA shakes hands with ABA to delay seed germination. Trends Plant Sci. 26, 764-766.
    Wang, F., Yuan, Z., Zhao, Z., Li, C., Zhang, X., Liang, H., Liu, Y., Xu, Q., Liu, H., 2020. Tasselseed5 encodes a cytochrome C oxidase that functions in sex determination by affecting jasmonate catabolism in maize. J. Integr. Plant Biol. 62, 247-255.
    Wang, J., Wu, D., Wang, Y., Xie, D., 2019. Jasmonate action in plant defense against insects. J. Exp. Bot. 70, 3391-3400.
    Wang, L., Chen, H., Chen, G., Luo, G., Shen, X., Ouyang, B., Bie, Z., 2024a. Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling. Plant Physiol. 194, 1075-1090.
    Wang, L., Einig, E., Almeida-Trapp, M., Albert, M., Fliegmann, J., Mithofer, A., Kalbacher, H., Felix, G., 2018. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nat. Plants 4, 152-156.
    Wang, L., Wu, B., Chen, G., Chen, H., Peng, Y., Sohail, H., Geng, S., Luo, G., Xu, D., Ouyang, B., et al., 2023. The essential role of jasmonate signaling in Solanum habrochaites rootstock-mediated cold tolerance in tomato grafts. Hortic. Res. 10, uhac227.
    Wang, M., Zhu, X., Huang, Z., Chen, M., Xu, P., Liao, S., Zhao, Y., Gao, Y., He, J., Luo, Y., et al., 2024b. Controlling diurnal flower-opening time by manipulating the jasmonate pathway accelerates development of indica-japonica hybrid rice breeding. Plant Biotechnol. J. 22, 2267-2281.
    Wasternack, C., Hause, B., 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021-1058.
    Wu, F., Deng, L., Zhai, Q., Zhao, J., Chen, Q., Li, C., 2020. Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32, 429-448.
    Wu, F., Sun, C., Zhu, Z., Deng, L., Yu, F., Xie, Q., Li, C., 2025. A multiprotein regulatory module, MED16-MBR1&2, controls MED25 homeostasis during jasmonate signaling. Nat. Commun. 16, 772.
    Wu, H., Ye, H., Yao, R., Zhang, T., Xiong, L., 2015. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci. 232, 1-12.
    Wu, S., Hu, C., Zhu, C., Fan, Y., Zhou, J., Xia, X., Shi, K., Zhou, Y., Foyer, C.H., Yu, J., 2024a. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. Mol. Plant 17, 598-613.
    Wu, Y., Sun, Y., Wang, W., Xie, Z., Zhan, C., Jin, L., Huang, J., 2024b. OsJAZ10 negatively modulates the drought tolerance by integrating hormone signaling with systemic electrical activity in rice. Plant Physiol. Biochem. 211, 108683.
    Xia, Y., Jiang, S., Wu, W., Du, K., Kang, X., 2024. MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar. New Phytol. 241, 2506-2522.
    Xiao, Y., Chen, Y., Charnikhova, T., Mulder, P.P., Heijmans, J., Hoogenboom, A., Agalou, A., Michel, C., Morel, J.B., Dreni, L., et al., 2014. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. Plant Mol. Biol. 86, 19-33.
    Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., Turner, J.G., 1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091-1094.
    Xie, K., Li, L., Zhang, H., Wang, R., Tan, X., He, Y., Hong, G., Li, J., Ming, F., Yao, X., et al., 2018. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant Cell Environ. 41, 2504-2514.
    Xie, M., Zhang, J., Yao, T., Bryan, A.C., Pu, Y., Labbe, J., Pelletier, D.A., Engle, N., Morrell-Falvey, J.L., Schmutz, J., et al., 2020. Arabidopsis C-terminal binding protein ANGUSTIFOLIA modulates transcriptional co-regulation of MYB46 and WRKY33. New Phytol. 228, 1627-1639.
    Xu, B.Q., Wang, J.J., Peng, Y., Huang, H., Sun, L.L., Yang, R., Suo, L.N., Wang, S.H., Zhao, W.C., 2022. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. Front. Plant Sci. 13, 952758.
    Xu, L., Huang, H., 2014. Genetic and epigenetic controls of plant regeneration. Curr. Top Dev. Biol. 108, 1-33.
    Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., Xie, D., 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919-1935.
    Yan, C., Xie, D., 2015. Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol. J. 13, 1233-1240.
    Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Luo, H., Nan, F., et al., 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220-2236.
    Yan, L., Zhai, Q., Wei, J., Li, S., Wang, B., Huang, T., Du, M., Sun, J., Kang, L., Li, C., et al., 2013. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 9, e1003964.
    Yan, T., Chen, M., Shen, Q., Li, L., Fu, X., Pan, Q., Tang, Y., Shi, P., Lv, Z., Jiang, W., et al., 2017. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytol. 213, 1145-1155.
    Yan, X., Cui, L., Liu, X., Cui, Y., Wang, Z., Zhang, H., Chen, L., Cui, H., 2022. NbJAZ3 is required for jasmonate-meditated glandular trichome development in Nicotiana benthamiana. Physiol. Plant 174, e13666.
    Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., Emery, R.J., Kolomiets, M.V., 2012. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24, 1420-1436.
    Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., Farmer, E.E., 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470-2483.
    Yan, Z., Zhang, W., Chen, J., Li, X., 2015. Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol. Plant 59, 373-381.
    Yang, D.L., Yao, J., Mei, C.S., Tong, X.H., Zeng, L.J., Li, Q., Xiao, L.T., Sun, T.P., Li, J., Deng, X.W., et al., 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. U. S. A. 109, E1192-1200.
    Yang, T., Deng, L., Wang, Q., Sun, C., Ali, M., Wu, F., Zhai, H., Xu, Q., Xin, P., Cheng, S., et al., 2024a. Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. Mol. Plant 17, 509-512.
    Yang, W., Zhai, H., Wu, F., Deng, L., Chao, Y., Meng, X., Chen, Q., Liu, C., Bie, X., Sun, C., et al., 2024b. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 187, 3024-3038 e3014.
    Yang, Z., Huang, Y., Yang, J., Yao, S., Zhao, K., Wang, D., Qin, Q., Bian, Z., Li, Y., Lan, Y., et al., 2020. Jasmonate signaling enhances RNA silencing and antiviral defense in rice. Cell Host Microbe 28, 89-103 e108.
    Yoon, J.Y., Hamayun, M., Lee, S.-K., Lee, I.-J., 2009. Methyl jasmonate alleviated salinity stress in soybean. J. Crop Sci. Biotechnol. 12, 63-68.
    You, X., Zhu, S., Zhang, W., Zhang, J., Wang, C., Jing, R., Chen, W., Wu, H., Cai, Y., Feng, Z., et al., 2019a. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytol. 224, 712-724.
    You, Y., Zhai, Q., An, C., Li, C., 2019b. LEUNIG_HOMOLOG mediates MYC2-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31, 2187-2205.
    Yu, J., Zhang, Y., Di, C., Zhang, Q., Zhang, K., Wang, C., You, Q., Yan, H., Dai, S.Y., Yuan, J.S., et al., 2016. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. J. Exp. Bot. 67, 751-762.
    Yu, L.J., Luo, Y.F., Liao, B., Xie, L.J., Chen, L., Xiao, S., Li, J.T., Hu, S.N., Shu, W.S., 2012. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol. 195, 97-112.
    Yu, X., Chen, G., Tang, B., Zhang, J., Zhou, S., Hu, Z., 2018. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. Plant Sci. 267, 65-73.
    Zeng, X., Zhou, X., Zhang, W., Murofushi, N., Kitahara, T., Kamuro, Y., 1999. Opening of rice floret in rapid response to methyl jasmonate. J. Plant Growth Regul. 18, 153-158.
    Zhai, Q., Deng, L., Li, C., 2020. Mediator subunit MED25: at the nexus of jasmonate signaling. Curr. Opin. Plant Biol. 57, 78-86.
    Zhai, Q., Li, C., 2019. The plant Mediator complex and its role in jasmonate signaling. J. Exp. Bot. 70, 3415-3424.
    Zhai, Q., Yan, C., Li, L., Xie, D., Li, C., 2017. Jasmonates. In Hormone metabolism and signaling in plants, pp. 243–272.
    Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M.Q., Wang, Y., Li, C., 2013. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9, e1003422.
    Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., Zhang, M., Wang, Q., Li, C., 2015. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27, 2814-2828.
    Zhang, B., Wu, S., Zhang, Y., Xu, T., Guo, F., Tang, H., Li, X., Wang, P., Qian, W., Xue, Y., 2016. A high temperature-dependent mitochondrial lipase EXTRA GLUME1 promotes floral phenotypic robustness against temperature fluctuation in rice (Oryza sativa L.). PLoS Genet. 12, e1006152.
    Zhang, F., Ke, J., Zhang, L., Chen, R., Sugimoto, K., Howe, G.A., Xu, H.E., Zhou, M., He, S.Y., Melcher, K., 2017. Structural insights into alternative splicing-mediated desensitization of jasmonate signaling. Proc. Natl. Acad. Sci. U. S. A. 114, 1720-1725.
    Zhang, F., Yao, J., Ke, J., Zhang, L., Lam, V.Q., Xin, X.F., Zhou, X.E., Chen, J., Brunzelle, J., Griffin, P.R., et al., 2015. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525, 269-273.
    Zhang, G., Liu, W., Gu, Z., Wu, S., E, Y., Zhou, W., Lin, J., Xu, L., 2023. Roles of the wound hormone jasmonate in plant regeneration. J. Exp. Bot. 74, 1198-1206.
    Zhang, G., Zhao, F., Chen, L., Pan, Y., Sun, L., Bao, N., Zhang, T., Cui, C.X., Qiu, Z., Zhang, Y., et al., 2019. Jasmonate-mediated wound signalling promotes plant regeneration. Nat. Plants 5, 491-497.
    Zhang, H., Zhang, H., Lin, J., 2020. Systemin-mediated long-distance systemic defense responses. New Phytol. 226, 1573-1582.
    Zhao, P., Yang, H., Sun, Y., Zhang, J., Gao, K., Wu, J., Zhu, C., Yin, C., Chen, X., Liu, Q., et al., 2025. Targeted MYC2 stabilization confers citrus Huanglongbing resistance. Science 388, 191-198.
    Zhao, Y., Dong, W., Zhang, N., Ai, X., Wang, M., Huang, Z., Xiao, L., Xia, G., 2014. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol. 164, 1068-1076.
    Zheng, W., Zhai, Q., Sun, J., Li, C.B., Zhang, L., Li, H., Zhang, X., Li, S., Xu, Y., Jiang, H., et al., 2006. Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol. 141, 1400-1413.
    Zhou, K., Wu, F., Deng, L., Xiao, Y., Yang, W., Zhao, J., Wang, Q., Chang, Z., Zhai, H., Sun, C., et al., 2024. Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato. Dev. Cell 60, 535-550.e8.
    Zhou, W., Brockmoller, T., Ling, Z., Omdahl, A., Baldwin, I.T., Xu, S., 2016. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana. Elife 5, e19531.
    Zhou, W., Lozano-Torres, J.L., Blilou, I., Zhang, X., Zhai, Q., Smant, G., Li, C., Scheres, B., 2019. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177, 942-956.e914.
    Zhu, C., Gan, L., Shen, Z., Xia, K., 2006. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J. Exp. Bot. 57, 1299-1308.
    Zhu, X., Chen, J., Xie, Z., Gao, J., Ren, G., Gao, S., Zhou, X., Kuai, B., 2015. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes. Plant J. 84, 597-610.
    Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.M., To, T.K., Li, W., et al., 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 12539-12544.
    Zou, J., Chen, X., Liu, C., Guo, M., Kanwar, M.K., Qi, Z., Yang, P., Wang, G., Bao, Y., Bassham, D.C., et al., 2023. Autophagy promotes jasmonate-mediated defense against nematodes. Nat. Commun. 14, 4769.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return