9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Postnatal critical-period brain plasticity and neurodevelopmental disorders: revisited circuit mechanisms

doi: 10.1016/j.jgg.2025.07.006
Funds:

This work was supported by grants from the National Natural Science Foundation of China (32130043 to X.Z. and 32400870 to Z.S.) and the Fundamental Research Funds for the Central Universities (2243300002 to Z.S.).

  • Received Date: 2025-04-10
  • Accepted Date: 2025-07-14
  • Rev Recd Date: 2025-07-14
  • Available Online: 2025-07-21
  • Critical periods (CPs) are defined as postnatal developmental windows during which brain circuits exhibit heightened sensitivity to altered experiences or sensory inputs, particularly during brain development in humans and animals. During the CP, experience-induced refinements of neural connections are crucial for establishing adaptive and mature brain functions, and aberrant CPs are often accompanied by many neurodevelopmental disorders (NDDs), including autism spectrum disorders and schizophrenia. Understanding neural mechanisms underlying the CP regulation is key to delineating the etiology of NDDs caused by abnormal postnatal neurodevelopment. Recent evidence from studies using innovative experimental tools has continuously revisited the inhibition-gating theory of CP to systematically elucidate the differential roles of distinct inhibitory circuits. Here, we provide a comprehensive review of classical experimental findings and emerging inhibitory-circuit regulation mechanisms of the CP, and further discuss how aberrant CP plasticity is associated with NDDs.
  • loading
  • Ackerman, S.D., Perez-Catalan, N.A., Freeman, M.R., Doe, C.Q., 2021. Astrocytes close a motor circuit critical period. Nature 592, 414-420.
    Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., Zoghbi, H.Y., 1999. Rett syndrome is caused by mutations in X-linked Mecp2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185-188.
    Antoine, M.W., Langberg, T., Schnepel, P., Feldman, D.E., 2019. Increased excitation-inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models. Neuron 101, 648-661.
    Banerjee, A., Rikhye, R.V., Breton-Provencher, V., Tang, X., Li, C., Li, K., Runyan, C.A., Fu, Z., Jaenisch, R., Sur, M., 2016. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc. Natl. Acad. Sci. U. S. A. 113, E7287-E7296.
    Barkat, T.R., Polley, D.B., Hensch, T.K., 2011. A critical period for auditory thalamocortical connectivity. Nat. Neurosci. 14, 1189-1996.
    Batista-Brito, R., Vinck, M., Ferguson, K.A., Chang, J.T., Laubender, D., Lur, G., Mossner, J.M., Hernandez, V.G., Ramakrishnan, C., Deisseroth, K., et al., 2017. Developmental dysfunction of VIP interneurons impairs cortical circuits. Neuron 95, 884-895.
    Bhumika, S., Nakamura, M., Valerio, P., Solyga, M., Linden, H., Barkat, T.R., 2019. A late critical period for frequency modulated sweeps in the mouse auditory system. Cereb. Cortex 30, 2586-2599.
    Calfa, G., Li, W., Rutherford, J.M., Pozzo-Miller, L., 2015. Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice. Hippocampus 25, 159-168.
    Campagnola, L., Seeman, S.C., Chartrand, T., Kim, L., Hoggarth, A., Gamlin, C., Ito, S., Trinh, J., Davoudian, P., Radaelli, C., et al., 2022. Local connectivity and synaptic dynamics in mouse and human neocortex. Science 375, eabj5861.
    Cao, W., Lin, S., Xia, Q.Q., Du, Y.L., Yang, Q., Zhang, M.Y., Lu, Y.Q., Xu, J., Duan, S.M., Xia, J., et al., 2018. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron 97, 1253-1260.
    Castro, J., Garcia, R.I., Kwok, S., Banerjee, A., Petravicz, J., Woodson, J., Mellios, N., Tropea, D., Sur, M., 2014. Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. U. S. A. 111, 9941-9946.
    Chao, H.-T., Chen, H., Samaco, R.C., Xue, M., Chahrour, M., Yoo, J., Neul, J.L., Gong, S., Lu, H.-C., Heintz, N., et al., 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263-269.
    Chen, J., Dong, B., Feng, X., Jiang, D., Chen, G., Long, C., Yang, L., 2020. Aberrant mPFC GABAergic synaptic transmission and fear behavior in neuroligin-2 R215H knock-in mice. Brain Res. 1730, 146671.
    Chen, X.J., Rasch, M.J., Chen, G., Ye, C.Q., Wu, S., Zhang, X.H., 2014. Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex. J. Neurosci. 34, 2940-2955.
    Contractor, A., Ethell, I.M., Portera-Cailliau, C., 2021. Cortical interneurons in autism. Nat. Neurosci. 24, 1648-1659.
    Cottam, J.C., Smith, S.L., Hausser, M., 2013. Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. J. Neurosci. 33, 19567-19578.
    Dani, V.S., Chang, Q., Maffei, A., Turrigiano, G.G., Jaenisch, R., Nelson, S.B., 2005. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. U. S. A. 102, 12560-12565.
    Dani, V.S., Nelson, S.B., 2009. Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome. J. Neurosci. 29, 11263-11270.
    Davis, M.F., Figueroa Velez, D.X., Guevarra, R.P., Yang, M.C., Habeeb, M., Carathedathu, M.C., Gandhi, S.P., 2015. Inhibitory neuron transplantation into adult visual cortex creates a new critical period that rescues impaired vision. Neuron 86, 1055-1066.
    Di Cristo, G., Chattopadhyaya, B., Kuhlman, S.J., Fu, Y., Belanger, M.C., Wu, C.Z., Rutishauser, U., Maffei, L., Huang, Z.J., 2007. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat. Neurosci. 10, 1569-1577.
    Dolen, G., Osterweil, E., Rao, B.S., Smith, G.B., Auerbach, B.D., Chattarji, S., Bear, M.F., 2007. Correction of fragile X syndrome in mice. Neuron 56, 955-962.
    Espinosa, J.S., Stryker, M.P., 2012. Development and plasticity of the primary visual cortex. Neuron 75, 230-249.
    Exposito-Alonso, D., Rico, B., 2022. Mechanisms underlying circuit dysfunction in neurodevelopmental disorders. Annu. Rev. Genet. 56, 391-422.
    Fagiolini, M., Hensch, T.K., 2000. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183-186.
    Fagiolini, M., Katagiri, H., Miyamoto, H., Mori, H., Grant, S.G., Mishina, M., Hensch, T.K., 2003. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc. Natl. Acad. Sci. U. S. A. 100, 2854-2859.
    Frenkel, M.Y., Bear, M.F., 2004. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917-923.
    Gatto, C.L., Broadie, K., 2010. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Front. Synaptic Neurosci. 2, 4.
    Gianfranceschi, L., Siciliano, R., Walls, J., Morales, B., Kirkwood, A., Huang, Z.J., Tonegawa, S., Maffei, L., 2003. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc. Natl. Acad. Sci. U. S. A. 100, 12486-12491.
    Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin, S.M., Feng, D., Anastassiou, C.A., Barkan, E., et al., 2019. Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182-1195.
    Grieco, S.F., Qiao, X., Zheng, X., Liu, Y., Chen, L., Zhang, H., Yu, Z., Gavornik, J.P., Lai, C., Gandhi, S.P., et al., 2020. Subanesthetic ketamine reactivates adult cortical plasticity to restore vision from amblyopia. Curr. Biol. 30, 3591-3603.
    Gu, Y., Cang, J., 2016. Binocular matching of thalamocortical and intracortical circuits in the mouse visual cortex. eLife 5, e22032.
    Hanover, J.L., Huang, Z.J., Tonegawa, S., Stryker, M.P., 1999. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J. Neurosci. 19, Rc40.
    Harauzov, A., Spolidoro, M., DiCristo, G., De Pasquale, R., Cancedda, L., Pizzorusso, T., Viegi, A., Berardi, N., Maffei, L., 2010. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J. Neurosci. 30, 361-371.
    Harlow, E.G., Till, S.M., Russell, T.A., Wijetunge, L.S., Kind, P., Contractor, A., 2010. Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice. Neuron 65, 385-398.
    He, L.J., Liu, N., Cheng, T.L., Chen, X.J., Li, Y.D., Shu, Y.S., Qiu, Z.L., Zhang, X.H., 2014. Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity. Nat. Commun. 5, 5036.
    He, Q., Arroyo, E.D., Smukowski, S.N., Xu, J., Piochon, C., Savas, J.N., Portera-Cailliau, C., Contractor, A., 2019. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol. Psychiatry 24, 1732-1747.
    Hensch, T.K., 2005. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877-888.
    Hensch, T.K., Fagiolini, M., Mataga, N., Stryker, M.P., Baekkeskov, S., Kash, S.F., 1998. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504-1508.
    Hinton, E.A., Li, D.C., Allen, A.G., Gourley, S.L., 2019. Social isolation in adolescence disrupts cortical development and goal-dependent decision-making in adulthood, despite social reintegration. eNeuro 6, ENEURO.0318-0319.2019.
    Hooks, B.M., Chen, C., 2020. Circuitry underlying experience-dependent plasticity in the mouse visual system. Neuron 106, 21-36.
    Huang, Z.J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M.F., Maffei, L., Tonegawa, S., 1999. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739-755.
    Hubel, D.H., Wiesel, T.N., 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419-436.
    Hubel, D.H., Wiesel, T.N., LeVay, S., 1977. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 278, 377-409.
    Isstas, M., Teichert, M., Bolz, J., Lehmann, K., 2017. Embryonic interneurons from the medial, but not the caudal ganglionic eminence trigger ocular dominance plasticity in adult mice. Brain Struct. Funct. 222, 539-547.
    Ito-Ishida, A., Ure, K., Chen, H., Swann, J.W., Zoghbi, H.Y., 2015. Loss of MeCP2 in parvalbumin-and somatostatin-expressing neurons in mice leads to distinct Rett syndrome-like phenotypes. Neuron 88, 651-658.
    Iwai, Y., Fagiolini, M., Obata, K., Hensch, T.K., 2003. Rapid critical period induction by tonic inhibition in visual cortex. J. Neurosci. 23, 6695-6702.
    Jeon, B.B., Kuhlman, S.J., 2017. The underdog pathway gets a boost. Nat. Neurosci. 20, 1655-1656.
    Kaneko, M., Stellwagen, D., Malenka, R.C., Stryker, M.P., 2008. Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58, 673-680.
    Kannan, M., Gross, G.G., Arnold, D.B., Higley, M.J., 2016. Visual deprivation during the critical period enhances layer 2/3 GABAergic inhibition in mouse V1. J. Neurosci. 36, 5914-5919.
    Kawaguchi, Y., 1997. Selective cholinergic modulation of cortical GABAergic cell subtypes. J. Neurophysiol. 78, 1743-1747.
    Kerlin, A.M., Andermann, M.L., Berezovskii, V.K., Reid, R.C., 2010. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858-871.
    Khaleghi, A., Zarafshan, H., Vand, S.R., Mohammadi, M.R., 2020. Effects of non-invasive neurostimulation on autism spectrum disorder: A systematic review. Clin. Psychopharmacol. Neurosci. 18, 527-552.
    Khibnik, L.A., Cho, K.K., Bear, M.F., 2010. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex. Neuron 66, 493-500.
    Kim, H., Gibboni, R., Kirkhart, C., Bao, S., 2013. Impaired critical period plasticity in primary auditory cortex of fragile X model mice. J. Neurosci. 33, 15686-15692.
    Kim, H., Kunz, P.A., Mooney, R., Philpot, B.D., Smith, S.L., 2016. Maternal loss of Ube3a impairs experience-driven dendritic spine maintenance in the developing visual cortex. J. Neurosci. 36, 4888-4894.
    Krishnan, K., Wang, B.S., Lu, J., Wang, L., Maffei, A., Cang, J., Huang, Z.J., 2015. MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc. Natl. Acad. Sci. U. S. A. 112, E4782-E4791.
    Kuan, L., Li, Y., Lau, C., Feng, D., Bernard, A., Sunkin, S.M., Zeng, H., Dang, C., Hawrylycz, M., Ng, L., 2015. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. Methods 73, 4-17.
    Kuhlman, S.J., Olivas, N.D., Tring, E., Ikrar, T., Xu, X., Trachtenberg, J.T., 2013. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501, 543-546.
    Lambo, M.E., Turrigiano, G.G., 2013. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity. J. Neurosci. 33, 8810-8819.
    Larimer, P., Spatazza, J., Espinosa, J.S., Tang, Y., Kaneko, M., Hasenstaub, A.R., Stryker, M.P., Alvarez-Buylla, A., 2016. Caudal ganglionic eminence precursor transplants disperse and integrate as lineage-specific interneurons but do not induce cortical plasticity. Cell Rep. 16, 1391-1404.
    Lazarus, M.S., Huang, Z.J., 2011. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. J. Neurophysiol. 106, 775-787.
    Lee, S.H., Kwan, A.C., Zhang, S., Phoumthipphavong, V., Flannery, J.G., Masmanidis, S.C., Taniguchi, H., Huang, Z.J., Zhang, F., Boyden, E.S., et al., 2012. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379-383.
    Lensjo, K.K., Lepperod, M.E., Dick, G., Hafting, T., Fyhn, M., 2017. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J. Neurosci. 37, 1269-1283.
    Lim, C.S., Kim, H., Yu, N.K., Kang, S.J., Kim, T., Ko, H.G., Lee, J., Yang, J.E., Ryu, H.H., Park, T., et al., 2017. Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. Neuropharmacology 112, 104-112.
    Liu, C.H., Heynen, A.J., Shuler, M.G., Bear, M.F., 2008. Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex. Neuron 58, 340-345.
    Lo, S.Q., Sng, J.C.G., Augustine, G.J., 2017. Defining a critical period for inhibitory circuits within the somatosensory cortex. Sci. Rep. 7, 7271.
    Lu, J., Tucciarone, J., Lin, Y., Huang, Z.J., 2014. Input-specific maturation of synaptic dynamics of parvalbumin interneurons in primary visual cortex. Proc. Natl. Acad. Sci. U. S. A. 111, 16895-16900.
    Luo, Y., Wang, L., Cao, Y., Shen, Y., Gu, Y., Wang, L., 2024. Reduced excitatory activity in the developing mPFC mediates a PV(H)-to-PV(L) transition and impaired social cognition in autism spectrum disorders. Transl Psychiatry 14, 325.
    Ma, W.P., Li, Y.T., Tao, H.W., 2013. Downregulation of cortical inhibition mediates ocular dominance plasticity during the critical period. J. Neurosci. 33, 11276-11280.
    Ma, W.P., Liu, B.H., Li, Y.T., Huang, Z.J., Zhang, L.I., Tao, H.W., 2010. Visual representations by cortical somatostatin inhibitory neurons--selective but with weak and delayed responses. J. Neurosci. 30, 14371-14379.
    Ma, X., Chen, K., Cui, Y., Huang, G., Nehme, A., Zhang, L., Li, H., Wei, J., Liong, K., Liu, Q., et al., 2020. Depletion of microglia in developing cortical circuits reveals its critical role in glutamatergic synapse development, functional connectivity, and critical period plasticity. J. Neurosci. Res. 98, 1968-1986.
    Makowiecki, K., Harvey, A.R., Sherrard, R.M., Rodger, J., 2014. Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J. Neurosci. 34, 10780-10792.
    Markopoulos, A., Inserra, A., De Gregorio, D., Gobbi, G., 2021. Evaluating the potential use of serotonergic psychedelics in autism spectrum disorder. Front Pharmacol 12, 749068.
    Matsuura, T., Sutcliffe, J.S., Fang, P., Galjaard, R.J., Jiang, Y.H., Benton, C.S., Rommens, J.M., Beaudet, A.L., 1997. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (Ube3a) in Angelman syndrome. Nat. Genet. 15, 74-77.
    Maya Vetencourt, J.F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., O'Leary, O.F., Castren, E., Maffei, L., 2008. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385-388.
    Mayberry, R.I., Kluender, R., 2018. Rethinking the critical period for language: New insights into an old question from American Sign Language. Biling. (Camb. Engl.) 21, 938-944.
    McGee, A.W., Yang, Y., Fischer, Q.S., Daw, N.W., Strittmatter, S.M., 2005. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222-2226.
    Mei, L., Xiong, W.C., 2008. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 9, 437-452.
    Miao, Q., Yao, L., Rasch, M.J., Ye, Q., Li, X., Zhang, X., 2016. Selective maturation of temporal dynamics of intracortical excitatory transmission at the critical period onset. Cell Rep. 16, 1677-1689.
    Morales, B., Choi, S.Y., Kirkwood, A., 2002. Dark rearing alters the development of GABAergic transmission in visual cortex. J. Neurosci. 22, 8084-8090.
    Mossner, J.M., Batista-Brito, R., Pant, R., Cardin, J.A., 2020. Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. eLife 9, e55639.
    Mrsic-Flogel, T.D., Hofer, S.B., Ohki, K., Reid, R.C., Bonhoeffer, T., Hubener, M., 2007. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961-972.
    Nahmani, M., Turrigiano, G.G., 2014. Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period. J. Neurosci. 34, 2571-2582.
    Nardou, R., Sawyer, E., Song, Y.J., Wilkinson, M., Padovan-Hernandez, Y., de Deus, J.L., Wright, N., Lama, C., Faltin, S., Goff, L.A., et al., 2023. Psychedelics reopen the social reward learning critical period. Nature 618, 790-798.
    Nomura, T., Musial, T.F., Marshall, J.J., Zhu, Y., Remmers, C.L., Xu, J., Nicholson, D.A., Contractor, A., 2017. Delayed maturation of fast-spiking interneurons is rectified by activation of the TrkB receptor in the mouse model of fragile X syndrome. J. Neurosci. 37, 11298-11310.
    Nott, A., Cho, S., Seo, J., Tsai, L.H., 2015. HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex. Neuroepigenetics 1, 34-40.
    Parenti, I., Rabaneda, L.G., Schoen, H., Novarino, G., 2020. Neurodevelopmental disorders: From genetics to functional pathways. Trends Neurosci. 43, 608-621.
    Park, E., Mosso, M.B., Barth, A.L., 2025. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci. 48, 140-155.
    Paspalas, C.D., Papadopoulos, G.C., 2001. Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex. Brain Res. 891, 158-167.
    Penagarikano, O., Abrahams, B.S., Herman, E.I., Winden, K.D., Gdalyahu, A., Dong, H., Sonnenblick, L.I., Gruver, R., Almajano, J., Bragin, A., et al., 2011. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235-246.
    Pfeffer, C.K., Xue, M., He, M., Huang, Z.J., Scanziani, M., 2013. Inhibition of inhibition in visual cortex: The logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068-1076.
    Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W., Maffei, L., 2002. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248-1251.
    Priya, R., Rakela, B., Kaneko, M., Spatazza, J., Larimer, P., Hoseini, M.S., Hasenstaub, A.R., Alvarez-Buylla, A., Stryker, M.P., 2019. Vesicular GABA transporter is necessary for transplant-induced critical period plasticity in mouse visual cortex. J. Neurosci. 39, 2635-2648.
    Provenzano, G., Gilardoni, A., Maggia, M., Pernigo, M., Sgado, P., Casarosa, S., Bozzi, Y., 2020. Altered expression of GABAergic markers in the forebrain of young and adult Engrailed-2 knockout mice. Genes (Basel) 11, 384.
    Quinlan, E.M., Philpot, B.D., Huganir, R.L., Bear, M.F., 1999. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 352-357.
    Ralston, M., Osman, A., Suryadevara, P., Cleland, E., 2024. Effect of ketamine treatment on social withdrawal in autism and autism-like conditions. Clin. Neuropharmacol. 47, 97-100.
    Reddihough, D.S., Marraffa, C., Mouti, A., O’Sullivan, M., Lee, K.J., Orsini, F., Hazell, P., Granich, J., Whitehouse, A.J.O., Wray, J., et al., 2019. Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders: A randomized clinical trial. JAMA 322, 1561-1569.
    Reh, R.K., Dias, B.G., Nelson, C.A., 3rd, Kaufer, D., Werker, J.F., Kolb, B., Levine, J.D., Hensch, T.K., 2020. Critical period regulation across multiple timescales. Proc. Natl. Acad. Sci. U. S. A. 117, 23242-23251.
    Renger, J.J., Hartman, K.N., Tsuchimoto, Y., Yokoi, M., Nakanishi, S., Hensch, T.K., 2002. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc. Natl. Acad. Sci. U. S. A. 99, 1041-1046.
    Ribot, J., Breton, R., Calvo, C.F., Moulard, J., Ezan, P., Zapata, J., Samama, K., Moreau, M., Bemelmans, A.P., Sabatet, V., et al., 2021. Astrocytes close the mouse critical period for visual plasticity. Science 373, 77-81.
    Rikhye, R.V., Yildirim, M., Hu, M., Breton-Provencher, V., Sur, M., 2021. Reliable sensory processing in mouse visual cortex through cooperative interactions between somatostatin and parvalbumin interneurons. J. Neurosci. 41, 8761-8778.
    Rittenhouse, C.D., Shouval, H.Z., Paradiso, M.A., Bear, M.F., 1999. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature 397, 347-350.
    Rotaru, D.C., van Woerden, G.M., Wallaard, I., Elgersma, Y., 2018. Adult Ube3a gene reinstatement restores the electrophysiological deficits of prefrontal cortex layer 5 neurons in a mouse model of Angelman syndrome. J. Neurosci. 38, 8011-8030.
    Rudy, B., Fishell, G., Lee, S., Hjerling-Leffler, J., 2011. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45-61.
    Sadahiro, M., Demars, M.P., Burman, P., Yevoo, P., Zimmer, A., Morishita, H., 2020. Activation of somatostatin interneurons by nicotinic modulator Lypd6 enhances plasticity and functional recovery in the adult mouse visual cortex. J. Neurosci. 40, 5214-5227.
    Sato, M., Stryker, M.P., 2010. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc. Natl. Acad. Sci. U. S. A. 107, 5611-5616.
    Schneider-Mizell, C.M., Bodor, A.L., Brittain, D., Buchanan, J., Bumbarger, D.J., Elabbady, L., Gamlin, C., Kapner, D., Kinn, S., Mahalingam, G., et al., 2025. Inhibitory specificity from a connectomic census of mouse visual cortex. Nature 640, 448-458.
    Scholl, B., Banerjee, A., 2014. Synaptic correlates of binocular convergence: Just a coincidence? J. Neurosci. 34, 8931-8933.
    Selby, L., Zhang, C., Sun, Q.Q., 2007. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci. Lett. 412, 227-232.
    Severin, D., Hong, S.Z., Roh, S.E., Huang, S., Zhou, J., Bridi, M.C.D., Hong, I., Murase, S., Robertson, S., Haberman, R.P., et al., 2021. All-or-none disconnection of pyramidal inputs onto parvalbumin-positive interneurons gates ocular dominance plasticity. Proc. Natl. Acad. Sci. U. S. A. 118, e2105388118.
    Shapiro, J.T., Gosselin, E.A.R., Michaud, N.M., Crowder, N.A., 2022. Activating parvalbumin-expressing interneurons produces iceberg effects in mouse primary visual cortex neurons. Neurosci. Lett. 786, 136804.
    Sigal, Y.M., Bae, H., Bogart, L.J., Hensch, T.K., Zhuang, X., 2019. Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging. Proc. Natl. Acad. Sci. U. S. A. 116, 7071-7076.
    Sipe, G.O., Lowery, R.L., Tremblay, M., Kelly, E.A., Lamantia, C.E., Majewska, A.K., 2016. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 7, 10905.
    Song, Y.H., Hwang, Y.S., Kim, K., Lee, H.R., Kim, J.H., Maclachlan, C., Dubois, A., Jung, M.W., Petersen, C.C.H., Knott, G., et al., 2020. Somatostatin enhances visual processing and perception by suppressing excitatory inputs to parvalbumin-positive interneurons in V1. Sci. Adv. 6, eaaz0517.
    Song, Y.J., Xing, B., Barbour, A.J., Zhou, C., Jensen, F.E., 2021. Dysregulation of GABAA receptor-mediated neurotransmission during the auditory cortex critical period in the fragile X syndrome mouse model. Cereb. Cortex 32, 197-215.
    Starkey, J., Horstick, E.J., Ackerman, S.D., 2023. Glial regulation of critical period plasticity. Front. Cell. Neurosci. 17, 1247335.
    Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., Brynjolfsson, J., Gunnarsdottir, S., Ivarsson, O., Chou, T.T., et al., 2002. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877-892.
    Stephany, C., Ikrar, T., Nguyen, C., Xu, X., McGee, A.W., 2016. Nogo receptor 1 confines a disinhibitory microcircuit to the critical period in visual cortex. J. Neurosci. 36, 11006-11012.
    Su, J., Basso, D., Iyer, S., Su, K., Wei, J., Fox, M.A., 2020. Paracrine role for somatostatin interneurons in the assembly of perisomatic inhibitory synapses. J. Neurosci. 40, 7421-7435.
    Sugiyama, S., Di Nardo, A.A., Aizawa, S., Matsuo, I., Volovitch, M., Prochiantz, A., Hensch, T.K., 2008. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134, 508-520.
    Sun, Y., Ikrar, T., Davis, M.F., Gong, N., Zheng, X., Luo, Z.D., Lai, C., Mei, L., Holmes, T.C., Gandhi, S.P., et al., 2016. Neuregulin-1/ErbB4 signaling regulates visual cortical plasticity. Neuron 92, 160-173.
    Tang, Y., Stryker, M.P., Alvarez-Buylla, A., Espinosa, J.S., 2014. Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons. Proc. Natl. Acad. Sci. U. S. A. 111, 18339-18344.
    Tseng, P.T., Zeng, B.S., Hung, C.M., Liang, C.S., Stubbs, B., Carvalho, A.F., Brunoni, A.R., Su, K.P., Tu, Y.K., Wu, Y.C., et al., 2022. Assessment of noninvasive brain stimulation interventions for negative symptoms of schizophrenia: A systematic review and network meta-analysis. JAMA Psychiatry 79, 770-779.
    Urban-Ciecko, J., Barth, A.L., 2016. Somatostatin-expressing neurons in cortical networks. Nat. Rev. Neurosci. 17, 401-409.
    Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P., et al., 1991. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905-914.
    Vogt, D., Cho, K.K.A., Lee, A.T., Sohal, V.S., Rubenstein, J.L.R., 2015. The parvalbumin/somatostatin ratio is increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep. 11, 944-956.
    Wallace, M.L., Burette, A.C., Weinberg, R.J., Philpot, B.D., 2012. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 74, 793-800.
    Wallace, M.L., van Woerden, G.M., Elgersma, Y., Smith, S.L., Philpot, B.D., 2017. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. J. Neurophysiol. 118, 634-646.
    Wen, L., Lu, Y.S., Zhu, X.H., Li, X.M., Woo, R.S., Chen, Y.J., Yin, D.M., Lai, C., Terry, A.V., Jr., Vazdarjanova, A., et al., 2010. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc. Natl. Acad. Sci. U. S. A. 107, 1211-1216.
    Werker, J.F., Hensch, T.K., 2015. Critical periods in speech perception: New directions. Annu. Rev. Psychol. 66, 173-196.
    Wiesel, T.N., Hubel, D.H., 1963. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003-1017.
    Wilson, N.R., Runyan, C.A., Wang, F.L., Sur, M., 2012. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343-348.
    Xin, W., Kaneko, M., Roth, R.H., Zhang, A., Nocera, S., Ding, J.B., Stryker, M.P., Chan, J.R., 2024. Oligodendrocytes and myelin limit neuronal plasticity in visual cortex. Nature 633, 856-863.
    Xu, H., Jeong, H.Y., Tremblay, R., Rudy, B., 2013. Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron 77, 155-167.
    Xu, X., Olivas, N.D., Ikrar, T., Peng, T., Holmes, T.C., Nie, Q., Shi, Y., 2016. Primary visual cortex shows laminar-specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity. J. Physiol. 594, 1891-1910.
    Yaeger, C.E., Ringach, D.L., Trachtenberg, J.T., 2019. Neuromodulatory control of localized dendritic spiking in critical period cortex. Nature 567, 100-104.
    Yao, Y., Li, Q., 2024. The role of parvalbumin interneurons in autism spectrum disorder. J. Neurosci. Res. 102, e25391.
    Yazaki-Sugiyama, Y., Kang, S., Cateau, H., Fukai, T., Hensch, T.K., 2009. Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462, 218-221.
    Zhang, H., Kang, E., Wang, Y., Yang, C., Yu, H., Wang, Q., Chen, Z., Zhang, C., Christian, K.M., Song, H., et al., 2016. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat. Commun. 7, 11773.
    Zhang, Y., Yao, L., Li, X., Meng, M., Shang, Z., Wang, Q., Xiao, J., Gu, X., Xu, Z., Zhang, X., 2021. Schizophrenia risk-gene Crmp2 deficiency causes precocious critical period plasticity and deteriorated binocular vision. Sci. Bull. 66, 2225-2237.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return