9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Integrative multi-omics and genomic prediction reveal genetic basis of early salt tolerance in alfalfa

doi: 10.1016/j.jgg.2025.09.001
Funds:

This work was supported by the National Key Research and Development Program of China (2022YFF1003203), the Major Project in Agricultural Biological Breeding (2022ZD04011), the Central Public-interest Scientific Institution Basal Research Fund (Y2025YC44), the Central Public-interest Scientific Institution Basal Research Fund (2025-YWF-ZYSQ-04), and the China Postdoctoral Science Foundation (2023M733832).

  • Received Date: 2025-03-15
  • Accepted Date: 2025-09-01
  • Rev Recd Date: 2025-09-01
  • Available Online: 2025-09-10
  • The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework. Analysis reveals weak genetic correlations among four salt-tolerance traits and a gradual decline in performance under increasing salt stress. GWAS identify 60 significant associated SNPs, with the highest number detected under 100 mM salt stress. Salt tolerance exhibits an additive effect from favorable haplotypes, which are most abundant in Chinese accessions. GWAS-associated genes are related to key regulators of hormone signaling and osmotic adjustment, while transcriptome analysis indicates a global repression of stress-responsive transcription factors. Integrating these multi-omics datasets allow us to identify 14 candidate genes, including MsHSD1 (seed dormancy) and MsMTATP6 (energy metabolism). Crucially, incorporating these markers into genomic prediction models improve cross-population predictive accuracy to an average of 54.4%. This study provides insights into the genetic architecture of salt tolerance in alfalfa and offers valuable markers to facilitate molecular breeding.

  • loading
  • Anders, S., Huber, W., 2010. Differential expression analysis for sequence count data. Genome Biol. 11, R106.
    Baud, S., Dichow, N.R., Kelemen, Z., d’Andrea, S., To, A., Berger, N., Canonge, M., Kronenberger, J., Viterbo, D., Dubreucq, B., 2009. Regulation of HSD1 in seeds of arabidopsis thaliana. Plant Cell Physiol. 50, 1463-1478.
    Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 13, 1194-1202.
    Chen, S.F., Zhou, Y.Q., Chen, Y.R., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884-890.
    Cornacchione, M.V., Suarez, D.L., 2015. Emergence, forage production, and ion relations of alfalfa in response to saline waters. Crop Sci. 55, 444-457.
    Cornacchione, M.V., Suarez, D.L., 2017. Evaluation of alfalfa (Medicago sativa L.) populations’ response to salinity stress. Crop Sci. 57, 137-150.
    Cui, Z., Luo, J., Qi, C., Ruan, Y., Li, J., Zhang, A., Yang, X., He, Y., 2016. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics 17, 1-14.
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
    der-Auwera, G.A.V., 2013. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. 43, 1.
    Ding, Z., Li, S., An, X., Liu, X., Qin, H., Wang, D., 2009. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in arabidopsis thaliana. J. Genet. Genomics 36, 17-29.
    Dong, W., Liu, X., Li, D., Gao, T., Song, Y., Zhang, J.S., 2018. Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS One 13.
    FAO, A., 2005. Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service Rome.
    Figueroa, C.M., Feil, R., Ishihara, H., Watanabe, M., Kolling, K., Krause, U., Hohne, M., Encke, B., Plaxton, W.C., Zeeman, S.C., 2016. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J. 85, 410-423.
    Foolad, M.R., Hyman, J., Lin, G., 1999. Relationships between cold-and salt-tolerance during seed germination in tomato: Analysis of response and correlated response to selection. Plant Breed. 118, 49-52.
    He, F., Wei, C., Zhang, Y., Long, R., Li, M., Wang, Z., Yang, Q., Kang, J., Chen, L., 2022. Genome-wide association analysis coupled with transcriptome analysis reveals candidate genes related to salt stress in alfalfa (Medicago sativa L.). Front. Plant Sci. 12, 826584.
    Juliana, P., He, X., Poland, J., Roy, K.K., Malaker, P.K., Mishra, V.K., Chand, R., Shrestha, S., Kumar, U., Roy, C., 2022. Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height. Theor. Appl. Genet. 135, 1965-1983.
    Kai, W., Mingyao, L., Hakon, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 16, e164.
    Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimer, N.B., Sabatti, C., Eskin, E., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-354.
    Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L., 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, 1-13.
    Korte, A., Farlow, A., 2013. The advantages and limitations of trait analysis with GWAS: a review. Plant methods 9, 29.
    Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv, 1303.3997.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Subgroup, G.P.D.P., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
    Li, X., Wei, Y., Acharya, A., Hansen, J.L., Crawford, J.L., Viands, D.R., Michaud, R., Claessens, A., Brummer, E.C., 2015. Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8.
    Lin, Z., Hayes, B., Daetwyler, H., 2014. Genomic selection in crops, trees and forages: a review. Crop Pasture Sci. 65, 1177-1191.
    Liu, X.P., Yu, L.X., 2017. Genome-wide association mapping of loci associated with plant growth and forage production under salt stress in alfalfa (Medicago sativa L.). Front. Plant Sci. 8, 853.
    Liu, X.P., Hawkins, C., Peel, M.D., Yu, L.X., 2019. Genetic loci associated with salt tolerance in advanced breeding populations of tetraploid alfalfa using genome-wide association studies. Plant Genome 12, 180026.
    Liu, Z., Wang, N., Su, Y., Long, Q., Peng, Y., Shangguan, L., Zhang, F., Cao, S., Wang, X., Ge, M., et al., 2024. Grapevine pangenome facilitates trait genetics and genomic breeding. Nat. Genet. 56, 2804-2814.
    Luo, M., Zhang, Y., Li, J., Zhang, P., Chen, K., Song, W., Wang, X., Yang, J., Lu, X., Lu, B., 2021. Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method. Plant Biotechnol. J. 19, 1937-1951.
    Manchanda, G., Garg, N., 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant. 30, 595-618.
    McGowan, M., Wang, J., Dong, H., Liu, X., Jia, Y., Wang, X., Iwata, H., Li, Y., Lipka, A.E., Zhang, Z., 2021. Ideas in genomic selection with the potential to transform plant molecular breeding: a review. Plant Breed. 45, 273-319.
    Mendes, M.P., de, Souza.C.L., 2016. Genomewide prediction of tropical maize single-crosses. Euphytica 209, 651-663.
    Moghadam, A.A., Ebrahimie, E., Taghavi, S.M., Niazi, A., Babgohari, M.Z., Deihimi, T., Djavaheri, M., Ramezani, A., 2013. How the nucleus and mitochondria communicate in energy production during stress: Nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F 1 F 0-ATP synthase complex. Mol. Biotechnol. 54, 756-769.
    Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651-681.
    Patishtan, J., Hartley, T.N., Raquel F.D.C., Maathuis, F.J., 2018. Genome-wide association studies to identify rice salt-tolerance markers. Plant Cell Environ. 41, 970-982.
    Sakadevan, K., Nguyen, M.L., 2010. Extent, impact, and response to soil and water salinity in arid and semiarid regions. Adv. Agron. 109, 55-74.
    Schmidt, M., Kollers, S., Maasberg-Prelle, A., Grober, J., Schinkel, B., Tomerius, A., Graner, A., Korzun, V., 2016. Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theor. Appl. Genet. 129, 203-213.
    Shannon, M., Grieve, C., 1998. Tolerance of vegetable crops to salinity. Sci. Hortic. 78, 5-38.
    Stanga, J.P., Morffy, N., Nelson, D.C., 2016. Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Planta 243, 1397-1406.
    Wang, X., Liu, Z., Zhang, F., Xiao, H., Cao, S., Xue, H., Liu, W., Su, Y., Liu, Z., Zhong, H., et al., 2024. Integrative genomics reveals the polygenic basis of seedlessness in grapevine. Curr. Biol. 34, e3765.
    Wei, L., Feng, L., Liu, Y., Liao, W., 2022. Mitogen-activated protein kinase is involved in salt stress response in tomato (Solanum lycopersicum) seedlings. Int. J. Mol. Sci. 23, 7645.
    Wickham, H., 2011. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180-185.
    Yao, L., Li, Y., Ma, C., Tong, L., Du, F., Xu, M., 2020. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. J. Integr. Plant Biol. 62, 1535-1551.
    Yohannes, G., Kidane, L., Abraha, B., Beyene, T., 2020. Effect of Salt Stresses on Seed Germination and Early Seedling Growth of Camelina sativa L. Momona Ethiop. J. Sci. 12, 1-19.
    Zeng, A., Korth, K., Hancock, F., Pereira, A., Brye, K., Wu, C., Shi, A., 2017. Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol. Breed. 37, 30.
    Zhang, F., Kang, J., Long, R., Li, M., Sun, Y., He, F., Jiang, X., Yang, C., Yang, X., Kong, J., 2023. Application of machine learning to explore the genomic prediction accuracy of fall dormancy in autotetraploid alfalfa. Hortic. Res. 10, uhac225.
    Zhang, F., Long, R., Ma, Z., Xiao, H., Xu, X., Liu, Z., Wei, C., Wang, Y., Peng, Y., Yang, X., 2024. Evolutionary genomics of climatic adaptation and resilience to climate change in alfalfa. Mol. Plant. 17, 867-883.
    Zhu, Q., Zhang, J., Gao, X., Tong, J., Xiao, L., Li, W., Zhang, H., 2010. The Arabidopsis AP2/ERF transcription factor RAP2. 6 participates in ABA, salt and osmotic stress responses. Gene 457, 1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return