9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Deciphering the genetic regulation of flowering time in rapeseed for early-maturation breeding

doi: 10.1016/j.jgg.2025.08.011
Funds:

This work was supported by the National Key Research and Development Program of China (2022YFD1200400), the National Natural Science Foundation of China (32272111), Special fund for youth team of the Southwest Universities (SWU-XJPY202306), Chongqing Natural Science Foundation (CSTB2024NSCQ-LZX0012), Modern Agro-industry Technology Research System (CARS-12), Chongqing Modern Agricultural Industry Technology System (COMAITS202504), and Biological Breeding-National Science and Technology Major Project (2022ZD04008). We sincerely appreciate the Plant Editors team for English language editing of the manuscript, which significantly improved its clarity and overall quality.

  • Received Date: 2025-06-16
  • Accepted Date: 2025-08-30
  • Rev Recd Date: 2025-08-28
  • Available Online: 2025-09-08
  • Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency. In this review, we synthesize current information on flowering time regulation in rapeseed through an integrated analysis of its genetic, hormonal, and environmental dimensions, emphasizing their crosstalk and implications for yield. We consolidate multi-omics evidence from population genetics, functional genomics, and systems biology to create a haplotype-based framework that overcomes the trade-off between flowering time and yield, providing support for the precision breeding of early-maturing cultivars. The insights presented here could inform future research on flowering time regulation and guide strategies for increasing rapeseed productivity.
  • loading
  • Abelenda, J.A., Trabanco, N., del, Olmo I., Pozas, J., Martin-Trillo, M.d.M., Gomez-Garrido, J., Esteve-Codina, A., Pernas, M., Jarillo, J.A., Pineiro, M., 2023. High ambient temperature impacts on flowering time in Brassica napus through both H2A.Z-dependent and independent mechanisms. Environ. 46, 1427-1441.
    Ahmar, S., Zhai Y., Huang, H., Yu, K.,Hafeez, Ullah, Khan M., Shahid, M., Abdul, Samad, R., Ullah, Khan S., Amoo, O., Fan, C., et al., 2022. Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. Crop J. 10, 67-74.
    Allender C.J., King G.J., 2010. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol. 10, 54.
    Alvarez-Urdiola, R., Matus, J.T., Gonzalez-Miguel, V.M., Bernardo-Faura, M., Riechmann, J.L., 2025. Chronology of transcriptome and proteome expression during early Arabidopsis flower development. J. Exp. Bot. 76, 2743-2762.
    Amasino, R., 2010. Seasonal and developmental timing of flowering. Plant J. 61, 1001-1013.
    An, H., Qi, X., Gaynor, M.L., Hao, Y., Gebken, S.C., Mabry, M.E., McAlvay, A.C., Teakle, G.R., Conant, G.C., Barker, M.S., et al., 2019. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat. Commun. 10, 2878.
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    Bendix, C., Marshall, C.M., Harmon, F.G., 2015. Circadian clock genes universally control key agricultural traits. Mol. Plant 8, 1135-1152.
    Calderwood, A., Lloyd, A., Hepworth, J., Tudor, E.H., Jones, D.M., Woodhouse, S., Bilham, L., Chinoy, C., Williams, K., Corke, F., et al., 2020. Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus. New Phytol⁠. 229, 3534-3548.
    Campbell D.C., Kondra, Z.P., 1978. A genetic study of growth characters and yield characters of oilseed rape. Euphytica 27, 177-183.
    Cerise, M., da, Silveira., Falavigna V., Rodriguez-Maroto, G., Signol, A., Severing, E., Gao, H., van, Driel A., Vincent, C., Wilkens, S., Iacobini, F.R., et al., 2023. Two modes of gene regulation by TFL1 mediate its dual function in flowering time and shoot determinacy of Arabidopsis. Development 150, dev202089.
    Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., et al., 2014. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345, 950-953.
    Chao, H., Li, T., Luo, C., Huang, H., Ruan, Y., Li, X., Niu, Y., Fan, Y., Sun, W., Zhang, K., et al., 2020. BrassicaEDB: a gene expression database for brassica crops. Int. J. Mol. Sci. 21, 5831.
    Chen, L., Dong, F., Cai, J., Xin, Q., Fang, C., Liu, L., Wan, L., Yang, G., Hong, D., 2018. A 2.833-kb insertion in BnFLC.A2 and its homeologous exchange with BnFLC.C2 during breeding selection generated early-flowering rapeseed. Mol. Plant 111, 222-225.
    Chen, H., Wang, T., He, X., Cai, X., Lin, R., Liang, J., Wu, J., King, G., Wang, X., 2022a. BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Res. 50, D1432-D1441.
    Chen, L., Lei, W., He, W., Wang, Y., Tian, J., Gong, J., Hao, B., Cheng, X., Shu, Y., Fan, Z., 2022b. Mapping of two major QTLs controlling flowering time in Brassica napus using a high-density genetic map. Plants 11, 2635.
    Chen, X., Tong, C., Zhang, X., Song, A., Hu, M., Dong, W., Chen, F., Wang, Y., Tu, J., Liu, S., et al., 2021a. A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnol. J. 19, 615-630.
    Chen, Y., Zhou, R., Hu, Q., Wei, W., Liu, J., 2021b. Conservation and divergence of the CONSTANS-Like (COL) genes related to flowering and circadian rhythm in Brassica napus. Front. Plant Sci. 12, 760379.
    Cho, L.H., Yoon, J., An, G., 2017. The control of flowering time by environmental factors. Plant J. 90, 708-719.
    Choi, K., Kim, J., Hwang, H.J., Kim, S., Park, C., Kim, S.Y., Lee, I., 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell 23, 289-303.
    Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull C., et al., 2007a. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
    Ding, T., Cai, L., He, Y., Li, Y., Tian, E., Zhou, Q., Zhou, X., Wang, X., Yu, K, Shen, X., 2023. Bnplp1 positively regulates flowering time, plant height, and main inflorescence length in Brassica napus. Genes 14, 2206.
    Edwards, D., Batley, J., Snowdon, R.J., 2013. Accessing complex crop genomes with next-generation sequencing. Theor. Appl. Genet. 126, 1-11.
    Fan, S., Liu, H., Liu, J., Hua, W., Li, J., 2022. BnGF14-2c positively regulates flowering via the vernalization pathway in semi-winter rapeseed. Plants 11, 2312.
    Fan, S., Zhang, L., Tang, M., Cai, Y., Liu, J., Liu, H., Liu, J., Terzaghi, W., Wang, H., Hua, W., et al., 2021. CRISPR/Cas9-targeted mutagenesis of the BnaA03.BP gene confers semi-dwarf and compact architecture to rapeseed (Brassica napus L.). Plant Biotechnol. J. 19, 2383-2385.
    Fu, F., Liu, X., Wang, R., Zhai, C., Peng, G., Yu, F., Fernando, W.G.D., 2019. Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing. Sci. Rep. 9, 14600.
    Fu, R., Wang, J., Zhou, M., Ren, X., Hua, J., Liang, M., 2022. Five NUCLEAR FACTOR-Y subunit B genes in rapeseed (Brassica napus) promote flowering and root elongation in Arabidopsis. Planta 256, 115.
    Gaudinier, A., Blackman, B.K., 2020. Evolutionary processes from the perspective of flowering time diversity. New Phytol⁠. 225, 1883-1898.
    Gong, Z., 2020. Flowering phenology as a core domestication trait in soybean. J. Integr. Plant Biol. 62, 546-549.
    Goretti, D., Silvestre, M., Collani, S., Langenecker, T., Mendez, C., Madueno, F., Schmid, M., 2020. TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiol. 182, 2081-2095.
    Gu, H., Zhang, K., Chen, J., Gull, S., Chen, C., Hou, Y., Li, X., Miao, J., Zhou, Y., Liang, G., 2022. OsFTL4, an FT-like Gene, regulates flowering time and drought tolerance in rice (Oryza sativa L.). Rice 15, 47.
    Guo, J., Zeng, L., Chen, H., Ma, C., Tu, J., Shen, J., Wen, J., Fu, T., Yi, B., 2022. CRISPR/Cas9-mediated targeted mutagenesis of BnaCOL9 advances the flowering time of Brassica napus L. Int. J. Mol. Sci. 23, 14944.
    Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., Yang, C.J., York, A.M., Xue, W., Xu, G., et al., 2018. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Curr. Biol. 28, 3005-3015.
    Guo, Y., Hans, H., Christian, J., Molina, C., 2014. Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front. Plant Sci. 5, 282.
    Hanano, S., Goto, K., 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23, 3172-3184.
    avlickova, L., He Z., Berger, M., Wang, L., Sandmann, G., Chew, Y.P., Yoshikawa, G.V., Lu, G., Hu Q., Banga S.S., et al., 2024. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. Plant Biotechnol. J. 22, 738-750.
    He, Y., Wu, D., Wei, D., Fu, Y., Cui, Y., Dong, H., Tan, C., Qian, W., 2017. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci. Rep. 7, 15971.
    Helal, M., Gill, R.A., Tang, M., Yang, L., Hu, M., Yang, L., Xie, M., Zhao, C., Cheng, X., Zhang, Y., et al., 2021. SNP- and haplotype-based GWAS of flowering-related traits in Brassica napus. Plants 10, 2475.
    Hou, J., Long, Y., Raman, H., Zou, X., Wang, J., Dai, S., Xiao, Q., Li, C., Fan, L., Liu, B., et al., 2012. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol. 15, 238.
    Hu, J., Chen, B., Zhao, J., Zhang, F., Xie, T., Xu, K., Gao, G., Yan, G., Li, H., Li, L., Ji, G., An, H., Li, H., Huang., et al., 2022. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat. Genet. 54, 694-704.
    Huang, L., Min, Y., Schiessl, S., Xiong, X., Jan, H.U., He, X., Qian, W., Guan, C., Snowdon, R.J., Hua, W., et al., 2021. Integrative analysis of GWAS and transcriptome to reveal novel loci regulation flowering time in semi-winter rapeseed. Plant Sci. 310, 110980.
    Huang, Y., Jiang, L., Ruan, Y., Shen, W., Liu, C., 2013. An allotetraploid Brassica napus early-flowering mutant has BnaFLC2-regulated flowering. J. Sci. Food Agr. 93, 3763-3768.
    Imaizumi, T., F, T., Schultz, G.F., Harmon, A.L., Ho, A S., Kay S.A., 2005., FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293-297.
    Jian, H., Zhang, A., Ma, J., Wang, T., Yang, B., Shuang, L.S., Liu, M., Li, J., Xu, X., Paterson, A.H., et al., 2019. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics 20, 21.
    Jiang, P., Wang, S., Zheng, H., Li, H., Zhang, F., Su, Y., Xu, Z., Lin, H., Qian, Q., Ding, Y., 2018. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. New Phytol. 219, 422-435.
    Jiang, L., Li, D., Jin, L., Ruan, Y., Shen, W., Liu, C., 2018. Histone lysine methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral transition in Brassica napus. Plant J. 95, 672-685.
    Jin, Q., Gao, G., Guo, C., Yang, T., Li, G., Song, J., Zheng, N., Yin, S., Yi, L., Li, Z., et al., 2022. Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed. Theor. Appl. Genet. 135, 3469-3483.
    Jin, Q., Yin, S., Li, G., Guo, T., Wan, M., Li, H., Li, J., Ge, X., King, G.J., Li, Z., et al., 2021. Functional homoeologous alleles of CONSTANS contribute to seasonal crop type in rapeseed. Theor. Appl. Genet. 134, 3287-3303.
    Jin, S., Youn, G., Kim, S.Y., Kang, T., Shin, H.Y., Jung, J.Y., Seo, P.J., Ahn, J.H., 2024. The CUL3A-LFH1-UBC15 ubiquitin ligase complex mediates SHORT VEGETATIVE PHASE degradation to accelerate flowering at high ambient temperature. Plant Commun. 5, 100814.
    Johansson, M., Steffen, A., Lewinski, M., Kobi, N., Staiger, D., 2023. HDF1, a novel flowering time regulator identified in a mutant suppressing sensitivity to red light reduced 1 early flowering. Sci. Rep. 13, 1404.
    Jung, C., Muller, A.E., 2009. Flowering time control and applications in plant breeding. Trends Plant Sci. 14, 563-573.
    Kim, D.H., Doyle, M.R., Sung, S., Amasino, R.M., 2009. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25, 277-299.
    Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., Yano, M., 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096-1105.
    Kou, K., Yang, H., Li, H., Fang, C., Chen, L., Yue, L., Nan, H., Kong, L., Li, X., Wang, F., et al., 2022. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Curr. Biol. 32, 1728-1742.
    Kourani, M., Mohareb, F., Rezwan, F.I., Anastasiadi, M., Hammond, J.P., 2022. Genetic and physiological responses to heat stress in Brassica napus. Front. Plant Sci. 13, 832147.
    Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Grunewald, J., Joung, J.K., 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41-46.
    Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., Ahn, J.H., 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21, 397-402.
    Li, B., Zhao, W., Li, D., Chao, H., Zhao, X., Ta, N., Li, Y., Guan, Z., Guo, L., Zhang, L., et al., 2018a. Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Sci. 277, 296-310.
    Li, L., Li, X., Liu, Y., Liu, H., 2016. Flowering responses to light and temperature. Sci. China Life Sci.⁠ 59, 403-408.
    Li, R., Jeong, K., Davis, J.T., Kim, S., Lee, S., Michelmore, R.W., Kim, S., Maloof, J.N., 2018b. Integrated QTL and eQTL mapping provides insights and candidate genes for fatty acid composition, flowering time, and growth traits in a F2 population of a novel synthetic allopolyploid Brassica napus. Front. Plant Sci. 9, 1632.
    Li, X., Chen, L., Yao, L., Zou, J., Hao, J., Wu, W., 2022. Calcium-dependent protein kinase CPK32 mediates calcium signaling in regulating Arabidopsis flowering time. Natl. Sci. Rev. 9, nwab180.
    Li, Y., Li, X., Du, D., Ma, Q., Zhao, Z., Wang, L., Zhang, Y., Shi, H., Zhao, H., Li, H., et al., 2025. Genetic dissection of flowering time and fine mapping of qFT.A02-1 in rapeseed (Brassica napus L.). Theor. Appl. Genet. 138, 70.
    Liang, R., Wang, S., Cai, Y., Li, Z., Li, K.M., Wei, J., Sun, C., Zhu, H., Chen, K., Gao, C., 2025. Circular RNA-mediated inverse prime editing in human cells. Nat. Commun. 16, 5057.
    Liu, D., Li, J., Wang, S., Huang, T., Tao, F., Lin, Y., Lin, W., Zhao, X., Huang, Y., Jia, Y., et al., 2024. PlantCFG: A comprehensive database with web tools for analyzing candidate flowering genes in multiple plants. Plant Commun. 5, 100733.
    Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., Chen L.L., 2017. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant 10, 530-532.
    Liu, L., Ding, Q., Liu, J., Yang, C., Chen, H., Zhang, S., Zhu, J., Wang, D., 2020. Brassica napus COL transcription factor BnCOL2 negatively affects the tolerance of transgenic Arabidopsis to drought stress. Environ. Exp. Bot. 178, 104171.
    Liu, S., Raman, H., Xiang, Y., Zhao, C., Huang, J., Zhang, Y., 2022a. De novo design of future rapeseed crops: challenges and opportunities. Crop J. 10, 587-596.
    Liu, Z., Dong, X., Zheng, G., Xu, C., Wei, J., Cui, J., Cao, X., Li, H., Fang, X., Wang, Y., et al., 2022b. Integrate QTL mapping and transcription profiles reveal candidate genes regulating flowering time in Brassica napus. Front. Plant Sci. 13, 904198.
    Liu, YP., Yang, J., Yang, M.F., 2015. Pathways of flowering regulation in plants. Chin. J. Biotechnol. 31, 1553-1566.
    Lu, K., Li, T., He, J., Chang, W., Zhang, R., Liu, M., Yu, M., Fan, Y., Ma, J., Sun, W., et al., 2018. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res. 46, D1229-D1236.
    Lu, K., Wei, L., Li, X., Wang, Y., Wu, J., Liu, M., Zhang, C., Chen, Z., Xiao, Z., Jian, H., et al., 2019. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat. Commun. 10, 1154.
    Luo, J., Jiang, W., Tang, S., Mei, F., Yan, X., Zeng, X., Wu, G., 2020. BnSIP1-1 involves in light response and regulation of endogenous hormones and flowering time of Brassica napus. J. Plant Growth Regul. 40, 2049-2057.
    Luo, J., Tang, S., Mei, F., Peng, X., Li, J., Li, X., Yan, X., Zeng, X., Liu, F., Wu, Y., et al., 2017. BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front. Plant Sci. 8, 44.
    Magnani, E., Hake, S., 2008. KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain.Plant Cell 20, 875-887.
    Maple, R., Zhu, P., Hepworth, J., Wang, J. W., Dean, C., 2024. Flowering time: From physiology, through genetics to mechanism. Plant Physiol. 195, 190-212.
    Min, Y., He, S., Wang, X., Hu, H., Wei, S., Ge, A., Jiang, L., Yang, S., Guo, Y., Liu, Z., et al., 2024. Transcription factors BnaC09.FUL and BnaC06.WIP2 antagonistically regulate flowering time under long-day conditions in Brassica napus. J. Genet. Genomics 52, 650-665.
    Navarro, C., Abelenda, J.A., Cruz-Oro, E., Cuellar, C.A., Tamaki, S., Silva J., Shimamoto K.Prat S., 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478, 119-122.
    Niu, F., Rehmani, M.S., Yan, J., 2024. Multilayered regulation and implication of flowering time in plants. Plant Physiol. Biochem. 213, 108842.
    O’Neill, C.M., Lu, X., Calderwood, A., Tudor, E.H., Robinson, P., Wells, R., Morris, R., Penfiel, d.S., 2019. Vernalization and floral transition in autumn drive winter annual life history in oilseed rape. Curr. Biol. 29, 4300-4306.
    Poza-Viejo, L., Paya-Milans, M., San Martin-Uriz, P., Castro-Labrador, L., Lara-Astiaso, D., Wilkinson, M. D., Pineiro, M., Jarillo, J. A., Crevillen, P., 2022. Conserved and distinct roles of H3K27me3 demethylases regulating flowering time in Brassica rapa. Plant Cell Environ. 45, 1428-1441.
    Qu L., Zhong, M., Duan, F., Li, X., Yang, J., Zhou, Q., Tang, D., He, R., Liu, X., Zhao, X., 2024. The PHYB-FOF2-VOZ2 module functions to fine-tune flowering in response to changes in light quality by modulating FLC expression in Arabidopsis. Plant Commun. 5, 100922.
    Raboanatahiry, N., Chao, H., Dalin, H., Pu, S., Yan, W., Yu, L., Wang, B., Li, M., 2018. QTL alignment for seed yield and yield related traits in Brassica napus. Front. Plant Sci. 9, 1127.
    Rahman, H., Bennett, R.A., Kebede, B., 2018. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus. PLoS One 13, e0189723.
    Reyes, P.d.l., Romero-Campero, F.J., Gao, H., Serrano, G., Bueno., Romero, J.M., Valverde, F., 2023. CONSTANS alters the circadian clock in Arabidopsis thaliana. Mol. Plant 410, 1116-1120.
    Rosas, U., Mei, Y., Xie, Q., Banta, J.A., Zhou, R.W., Seufferheld, G., Gerard, S., Chou, L., Bhambhra, N., Parks, J.D., et al., 2014. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS. Nat. Commun. 6, 3651.
    Rousseau-Gueutin, M., Belser, C., Da, Silva, C., Richard, G., Istace, B., Cruaud, C., Falentin, C., Boideau, F., Boutte, J., Delourme, R., et al., 2020. Long-read assembly of the Brassica napus reference genome Darmor-bzh. Gigascience 9, giaa137.
    Rygulla, W., Friedt, W., Seyis, F., Luhs, W., Eynck, C., Von Tiedemann A., Snowdon, R.J., 2007. Combination of resistance to verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesized rapeseed (Brassica napus) lines. Plant Breeding 126, 596-602.
    Schiessl, S., Huettel, B., Kuehn, D., Reinhardt, R., Snowdon, R., 2017. Post-polyploidisation morphotype diversification associates with gene copy number variation. Sci. Rep. 7, 41845.
    Schiessl, S., Williams, N., Specht, P., Staiger, D., Johansson, M., 2019a. Different copies of SENSITIVITY TO RED LIGHT REDUCED 1 show strong subfunctionalization in Brassica napus. BMC Plant Biol. 19, 372.
    Schiessl, S.V., Quezada-Martinez, D., Tebartz, E., Snowdon, R.J., Qian, L., 2019b. The vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napus. Sci. Rep. 9, 14911.
    Sharma, N., Ruelens, P., D’Hauw, M., Maggen, T., Dochy, N., Torfs, S., Kaufmann, K., Rohde, A., Geuten, K., 2017. A Flowering Locus C homolog is a vernalization-regulated repressor in brachypodium and is cold regulated in wheat. Plant Physiol. 173, 1301-1315.
    Sheldon.C.C, Rouse, D.T., Finnegan, E.J., Peacock, W.J., Dennis, E.S., 2000. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. U.S.A. 97, 3753-3758.
    Shim, J.S., Kubota, A., Imaizumi, T., 2017. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol. 173, 5-15.
    Shrestha R., Gomez-Ariza J., Brambilla V., Fornara F., 2014. Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann. Bot. 114, 1445-1458.
    Siriwardana, C.L., Gnesutta, N., Kumimoto, R.W., Jones, D.S., Myers, Z.A., Mantovani, R., Holt, B.F., 2016. NUCLEAR FACTOR Y, subunit a (NF-YA) proteins positively regulate flowering and act through FLOWERING LOCUS T. PLoS Genet. 12, 1006496.
    Snowdon, R.J., Abbadi, A., Kox, T., Schmutze,r T., Leckband, G., 2015. Heterotic haplotype capture: precision breeding for hybrid performance. Trends Plant Sci. 20, 410-413.
    Song, J., Li, B., Cui, Y., Zhuo, C., Gu, Y., Hu, K., Wen, J., Yi, B., Shen, J.,Ma, C., et al., 2021. QTL mapping and diurnal transcriptome analysis identify candidate genes regulating Brassica napus flowering time. Int. J. Mol. Sci. 22, 7559.
    Song, J.M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., et al., 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34-45.
    Song, Y.H., Ito, S., Imaizumi, T., 2013. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575-583.
    Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., Imaizumi, T., 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66, 441-464.
    Sriboon, S., Li, H., Guo, C., Senkhamwong, T., Dai, C., Liu, K., 2020. Knock-out of TERMINAL FLOWER 1 genes altered flowering time and plant architecture in Brassica napus. BMC Genet. 21, 52.
    Staiger, D., Allenbach, L., Salathia, N., Fiechter, V., Davis, S.J., Millar, A.J., Chory, J., Fankhauser, C., 2003. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Gene Dev. 17, 256-268.
    Sun, F., Fan, G., Hu, Q., Zhou, Y., Guan, M., Tong, C., Li, J., Du, D., Qi, C., Jiang, L., et al., 2017. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J. 92, 452-468.
    Tadege, M., Sheldon, C.C., Helliwell, C.A., Stoutjesdijk, P., Dennis, E.S., Peacock, W.J., 2001. Control of flowering time by FLC orthologues in Brassica napus. Plant J. 28, 545-553.
    Takagi, H., Hempton, A.K., Imaizumi, T., 2023. Photoperiodic flowering in Arabidopsis: Multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. Plant Commun. 4, 100552.
    Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., Shimamoto, K., 2007. Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036.
    Tan, Z., Xie, Z., Dai, L., Zhang, Y., Zhao H., Tang, S., Wan, L., Yao, X., Guo, L., Hong, D., 2022. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Plant Biotechnol J. 20, 211-225.
    Tang, J., Liu, H., Quan, Y., Yao, Y., Li, K., Tang, G., Du, D., 2023. Fine mapping and causal gene identification of a novel QTL for early flowering by QTL-seq, target-seq and RNA-seq in spring oilseed rape. Theor. Appl. Genet. 136, 80.
    Tang, S., Zhao, H., Lu, S., Yu, L., Zhang, G., Zhang, Y., Yang, Q.Y., Zhou, Y., Wang, X., Ma, W., et al., 2021. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 14, 470-487.
    Tarkowska, D., Filek, M., Biesaga-Koscielniak, J., Marcinska, I., Machackova, I., Krekule, J., Strnad, M., 2012. Cytokinins in shoot apices of Brassica napus plants during vernalization. Plant Sci. 187, 105-112.
    Wan, M., Zhao, D., Lin, S., Wang, P., Liang, B., Jin, Q., Jiao, Y., Song, Y., Ge, X., King, G.J., et al., 2025. Allelic variation of BnaFTA2 and BnaFTC6 is associated with flowering time and seasonal crop type in rapeseed (Brassica napus L.). Plant Cell Environ. 48, 852-865.
    Wang, H., Li,X., Meng, B., Fan, Y., Khan,S.U., Qian, M., Zhang, M., Yang, H.Lu, K., 2024. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. Plant Biotechnol. J. 22, 1897-1912.
    Wang, H., Liu, J., Huang, J., Xiao, Q., Hayward, A., Li, F., Gong, Y., Liu Q., Ma, M., Fu, D., Xiao, M., 2023. Mapping and identifying candidate genes enabling cadmium accumulation in Brassica napus revealed by combined BSA-Seq and RNA-Seq analysis. Int. J. Mol. Sci. 15, 10163.
    Wang, J., Wang, Q., Gao, J., Lei, Y., Zhang, J., Zou, J., Lu, Z., Li, S., Lei, N., Dhungana, D., et al., 2025. Genetic regulatory pathways of plant flowering time affected by abiotic stress. Plant Stress 15, 100747.
    Wang, J., Zhang, C., Chen, Y., Shao, Y., Liao, M., Hou, Q., Zhang, W., Zhu, Y., Guo, Y., Liu, Z., et al., 2023. The BnTFL1-BnGF14nu-BnFD module regulates flower development and plant architecture in Brassica napus. Crop J. 11, 1696-1710.
    Wang, N., Wang, Y., Tian, F., King, G.J., Zhang, C., Long, Y., Shi, L., Meng, J., 2008. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol. 180, 751-765.
    Wang, T., Ping, X., Cao, Y., Jian, H., Gao, Y., Wang, J., Tan, Y., Xu, X., Lu, K., Li, J., et al., 2019. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol. 19, 336.
    Wei, D., Mei, J., Fu, Y., Disi, J.O., Li J., Qian, W., 2014. Quantitative trait loci analyses for resistance to sclerotinia sclerotiorum and flowering time in Brassica napus. Mol. Breeding 34, 1797-1804.
    Wellmer, F., Riechmann, J.L., 2010. Gene networks controlling the initiation of flower development. Trends Genet. 26, 519-527.
    Wen, J., Zhu, L., Qi, L., Ke, H., Yi, B., Shen, J., Tu, J., Ma, C., Fu, T., 2012. Characterization of interploid hybrids from crosses between Brassica juncea and B. oleracea and the production of yellow-seeded B. napus. Theor. Appl. Genet. 125, 19-32.
    Werner, S., Diederichsen, E., Frauen, M., Schondelmaier, J., Jung, C., 2007. Genetic mapping of clubroot resistance genes in oilseed rape. Theor. Appl. Genet. 116, 363-372.
    Wickland, D.P., Hanzawa, Y., 2015. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: functional evolution and molecular mechanisms. Mol. Plant 8, 983-997.
    Wingler, A., Soualiou, S., 2025. Overcoming physiological trade-offs between flowering time and crop yield - strategies for a changing climate. J. Exp. Bot. 10,1093.
    Wu, D., Liang, Z., Yan, T., Xu Y., Xuan, L., Tang, J., Zhou, G., Lohwasser,U., Hua, S., Wang, H., et al., 2019a. Whole-Genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol. Plant 12, 30-43.
    Wu, J., Chen, P., Zhao, Q., Cai, G., Hu, Y., Xiang, Y., Yang, Q., Wang, Y., Zhou, Y., 2019b. Co-location of QTL for sclerotinia stem rot resistance and flowering time in Brassica napus. Crop J. 7, 227-237.
    Xiao, Q., Wang, H., Song, N., Yu, Z., Imran, K., Xie, W., Qiu, S., Zhou F., Wen J., Dai C., et al., 2021. The Bnapus50K array: a quick and versatile genotyping tool for Brassica napus genomic breeding and research. G3-Genes Genom. Genet. 11, jkab241.
    Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G., Liu, Y.G., 2017. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol. Plant 10, 1246-1249.
    Xu, J., Dai, H., 2016. Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant Growth Regul. 80, 315-322.
    Xu, L., Hu, K., Zhang, Z., Guan, C., Chen, S., Hua, W., Li, J., Wen, J., Yi, B., Shen, J., et al., 2016. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res. 23, 43-52.
    Xu, Y., Zhang, B., Ma, N., Liu, X., Qin, M., Zhang, Y., Wang, K., Guo, N., Zuo, K., Liu, X., et al., 2020. Quantitative trait locus mapping and Identification of candidate genes controlling flowering time in Brassica napus L. Front. Plant Sci. 11, 626205.
    Yan, J., Liao, X., He, R., Zhong, M., Feng, P., Li, X., Tang, D., Liu, X., Zhao, X., 2017. Ectopic expression of GA2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana. Plant Physiol. Biochem. 111, 10-19.
    Yang, J., Chen, H., Yang, C., Ding, Q., Zhao, T., Wang, D., 2020. A WRKY transcription factor WRKY184 from Brassica napus L. is involved in flowering and secondary wall development in transgenic Arabidopsis thaliana. Plant Growth Regul. 92, 427-440.
    Yang, MK., Lin, WJ., Xu, YR., Xie, B.Y., Yu, B.Y., Chen, L., Huang, W., 2024.Flowering-time regulation by the circadian clock: from Arabidopsis to crops. Crop J. 12, 17-27.
    Yang, L., Xie, M., Wu, Y., Cui, X., Tang, M., Yang, L., Xiang, Y., Li, Y., Bai, Z., Huang, J., et al., 2023a. Genetic mapping and regional association analysis revealed a CYTOKININ RESPONSE FACTOR 10 gene controlling flowering time in Brassica napus L. Ind. Crop Prod. 193, 116239.
    Yang, Z., Wang, S., Wei, L., Huang, Y., Liu, D., Jia, Y., Luo, C., Lin, Y., Liang, C., Hu, Y., et al., 2023b. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Mol. Plant 16, 775-789.
    Yin, S., Wan, M., Guo, C., Wang, B., Li, H., Li, G., Tian, Y., Ge, X., King, G. J., Liu, K., et al., 2020. Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. J. Exp. Bot. 71, 4729-4741.
    Ying, L., Chen, H., Cai, W., 2014. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus. Plant Physiol. Biochem. 79, 77-87.
    Yi, L., Chen, C., Yin, S., Li, H., Li, Z., Wang, B., King, G., Wang, J., Liu, K., 2018. Sequence variation and functional analysis of a FRIGIDA orthologue (BnaA3.FRI) in Brassica napus. BMC Plant Biol. 18,32.
    Young, L.W., Wilen, R.W., Bonham-Smith P.C., 2004. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485-495.
    Yu, J., Xue, Y.X., Sarwar, R., Wei, S.H., Geng, R., Zhang, Y.F., Mu, J.X., Tan, X.L., 2024. The BnaBPs gene regulates flowering time and leaf angle in Brassica napus. Plant Direct 8, 70018.
    Yu, K., Wang, X., Li, W., Sun, L., Peng, Q., Chen, F., Zhang, W., Guan, R., Zhang, J., 2019. Identification and physical mapping of QTLs associated with flowering time in Brassica napus L. Euphytica 215, 152.
    Yu, M., Fan, Y., Li, X., Chen, X., Yu, S., Wei, S., Li, S., et al., 2023 LESION MIMIC MUTANT 1 confers basal resistance to Sclerotinia sclerotiorum in rapeseed via a salicylic acid-dependent pathway. J. Exp. Bot. 74, 5620-5634.
    Yuan, W., Luo, X., Li, Z., Yang, W., Wang, Y., Liu, R., Du, J., He, Y., 2016. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nat. Genet. 48, 1527-1534.
    Zhang, C., Gong, R., Zhong, H., Dai, C., Zhang, R., Dong, J., Li, Y., Liu, S., Hu, J., 2023. Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus. Front. Plant Sci. 14, 1153000.
    Zhang, J., Song, Q., Cregan, P.B., Nelson, R.L., Wang, X., Wu, J., Jiang, G.L., 2015. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16, 217.
    Zhao, C., Liu, L., Safdar, L.B., Xie, M., Cheng, X., Liu, Y., Xiang, Y., Tong, C., Tu, J., Huang J., et al., 2020. Characterization and fine mapping of a yellow-virescent gene regulating chlorophyll biosynthesis and early stage chloroplast development in Brassica napus. G3-Genes Genom. Genet. 10, 3201-3211.
    Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C., Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40.
    Zhao, X., Zan, L., He, N., Liu, H., Xing, X., Du, D., Tang, G., Li K., 2024. BnaC09.tfl1 controls determinate inflorescence trait in Brassica napus. Mol. Breeding 44, 68.
    Zhao, X.Y., Zhu, D.F., Zhou B., Peng, W.S., Lin, J.Z., Huang, X.Q., He, R.Q., Zhuo, Y.H., Peng, D., Tang, D.Y., et al., 2010. Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.). J. Zhejiang Univ. Sci. B. 11, 471-481.
    Zhou, E., Zhang, Y., Wang, H., Jia, Z., Wang, X., Wen, J., Shen, J., Fu, T., Yi, B., 2022. Identification and characterization of the MIKC-Type MADS-box gene family in Brassica napus and its role in floral transition. Int. J. Mol. Sci. 23, 4289.
    Zhou, Q., Han, D., Mason, A.S., Zhou, C., Zheng, W., Li, Y., Wu, C., Fu D., Huang Y., 2018. Earliness traits in rapeseed (Brassica napus): SNP loci and candidate genes identified by genome-wide association analysis. DNA Res. 25, 229-244.
    Zhu, W., Qi, J., Chen, J., Ma, S., Liu, K., Su, H., Cha,i M., Huang, Y., Xi, X., Cao, Z., et al., 2023. Identification of GA2ox family genes and expression analysis under gibberellin treatment in pineapple (Ananas comosus (L.) Merr.). Plants 12, 2673.
    Zhu, Y., Klasfeld S., Jeong, C.W., Jin, R., Goto, K., Yamaguchi, N., Wagner, D., 2020. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat. Commun. 11, 5118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return