9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 6
Jun.  2025
Turn off MathJax
Article Contents

Structural variation-based and gene-based pangenome construction reveals untapped diversity of hexaploid wheat

doi: 10.1016/j.jgg.2025.03.015
Funds:

This work was supported by the National Key Research and Development Program of China (2023YFF1000100 and 2023YFA0914601) and the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District (PT202101-01).

  • Received Date: 2024-11-28
  • Accepted Date: 2025-03-27
  • Rev Recd Date: 2025-03-25
  • Available Online: 2025-07-11
  • Publish Date: 2025-04-04
  • Increasing number of structural variations (SVs) have been identified as causative mutations for diverse agronomic traits. However, the systematic exploration of SVs quantity, distribution, and contribution in wheat was lacking. Here, we report high-quality gene-based and SV-based pangenomes comprising 22 hexaploid wheat assemblies showing a wide range of chromosome size, gene number, and TE component, which indicates their representativeness of wheat genetic diversity. Pan-gene analyses uncover 140,261 distinct gene families, of which only 23.2 % are shared in all accessions. Moreover, we build a ∼16.15 Gb graph pangenome containing 695,897 bubbles, intersecting 5132 genes and 230,307 cis-regulatory regions. Pairwise genome comparisons identify ∼1,978,221 non-redundant SVs and 497 SV hotspots. Notably, the density of bubbles as well as SVs show remarkable aggregation in centromeres, which probably play an important role in chromosome plasticity and stability. As for functional SVs exploration, we identify 2769 SVs with absolute relative frequency differences exceeding 0.7 between spring and winter growth habit groups. Additionally, several reported functional genes in wheat display complex structural graphs, for example, PPD-A1, VRT-A2, and TaNAAT2-A. These findings deepen our understanding of wheat genetic diversity, providing valuable graphical pangenome and variation resources to improve the efficiency of genome-wide association mapping in wheat.
  • loading
  • Alonge, M., Lebeigle, L., Kirsche, M., Jenike, K., Ou, S., Aganezov, S., Wang, X., Lippman, Z.B., Schatz, M.C.,Soyk, S., 2022. Automated assembly scaffolding using ragtag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258.
    Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., Ciren, D., et al., 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145-161.
    Athiyannan, N., Abrouk, M., Boshoff, W.H.P., Cauet, S., Rodde, N., Kudrna, D., Mohammed, N., Bettgenhaeuser, J., Botha, K.S., Derman, S.S., et al., 2022. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227-231.
    Aury, J.-M., Engelen, S., Istace, B., Monat, C., Lasserre-Zuber, P., Belser, C., Cruaud, C., Rimbert, H., Leroy, P., Arribat, S., et al., 2022. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience 11, giac034.
    Baird, L.M., Berndsen, C.E.,Monroe, J.D., 2024. Malate dehydrogenase in plants: evolution, structure, and a myriad of functions. Essays Biochem. 68, 221-233.
    Bayer, P.E., Golicz, A.A., Scheben, A., Batley, J.,Edwards, D., 2020. Plant pan-genomes are the new reference. Nat. Plants 6, 914-920.
    Bayer, P.E., Petereit, J., Durant, E., Monat, C., Rouard, M., Hu, H., Chapman, B., Li, C., Cheng, S., Batley, J., et al., 2022. Wheat panache: a pangenome graph database representing presence-absence variation across sixteen bread wheat genomes. Plant Genome 15, e20221.
    Beales, J., Turner, A., Griffiths, S., Snape, J.W.,Laurie, D.A., 2007. A Pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721-733.
    Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L., D'Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., et al., 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710.
    Cavanagh, C.R., Chao, S., Wang, S., Huang, B.E., Stephen, S., Kiani, S., Forrest, K., Saintenac, C., Brown-Guedira, G.L.,Akhunova, A., 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. U. S. A. 110, 8057-8062.
    Chen, C., Wu, S., Sun, Y., Zhou, J., Chen, Y., Zhang, J., Birchler, J.A., Han, F., Yang, N.,Su, H., 2024. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus. Genome Biol. 25, 63.
    Chen, J., Liu, Y., Liu, M., Guo, W., Wang, Y., He, Q., Chen, W., Liao, Y., Zhang, W., Gao, Y., et al., 2023. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat. Genet. 55, 2243-2254.
    Chen, S., Zhou, Y., Chen, Y.,Gu, J., 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
    Cheng, H., Liu, J., Wen, J., Nie, X., Xu, L., Chen, N., Li, Z., Wang, Q., Zheng, Z., Li, M., et al., 2019. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20, 136.
    Cheng, S., Feng, C., Wingen, L.U., Cheng, H., Riche, A.B., Jiang, M., Leverington-Waite, M., Huang, Z., Collier, S., Orford, S., et al., 2024. Harnessing landrace diversity empowers wheat breeding. Nature 632, 823-831.
    Clavijo, B.J., Venturini, L., Schudoma, C., Accinelli, G.G., Kaithakottil, G., Wright, J., Borrill, P., Kettleborough, G., Heavens, D., Chapman, H., et al., 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885-896.
    Collins, R.E.,Higgs, P.G., 2012. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413-3425.
    Consortium, T.C.P.-G., 2016. Computational pan-genomics: status, promises and challenges. Briefings Bioinf. 19, 118-135.
    Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., et al., 2021. Twelve years of samtools and bcftools. GigaScience 10, giab008.
    Eizenga, J.M., Novak, A.M., Sibbesen, J.A., Heumos, S., Ghaffaari, A., Hickey, G., Chang, X., Seaman, J.D., Rounthwaite, R., Ebler, J., et al., 2020. Pangenome graphs. Annu. Rev. Genom. Hum. Genet. 21, 139-162.
    Emms, D.M.,Kelly, S., 2019. Orthofinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238.
    FAO, 2022. Agricultural Production Statistics 2000-2020. FAOSTAT Analytical Brief Series 41. Rome.
    Feng, J., Liu, T., Qin, B., Zhang, Y.,Liu, X.S., 2012. Identifying CHIP-seq enrichment using MACS. Nat. Protoc. 7, 1728-1740.
    Goel, M.,Schneeberger, K., 2022. Plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics 38, 2922-2926.
    Goel, M., Sun, H., Jiao, W.B.,Schneeberger, K., 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277.
    Golicz, A.A., Bayer, P.E., Barker, G.C., Edger, P.P., Kim, H.R., Martinez, P.A., Chan, C.K.K., Severnellis, A., Mccombie, W.R.,Parkin, I.A.P., 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 13390.
    Guo, W., Xin, M., Wang, Z., Yao, Y., Hu, Z., Song, W., Yu, K., Chen, Y., Wang, X., Guan, P., et al., 2020. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 11, 5085.
    Guo, Z., Song, Y., Zhou, R., Ren, Z.,Jia, J., 2010. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol. 185, 841-851.
    Huang, X., Rymbekova, A., Dolgova, O., Lao, O.,Kuhlwilm, M., 2023. Harnessing deep learning for population genetic inference. Nat. Rev. Genet. 25, 61-78.
    Hubner, S., Bercovich, N., Todesco, M., Mandel, J.R., Odenheimer, J., Ziegler, E., Lee, J.S., Baute, G.J., Owens, G.L., Grassa, C.J., et al., 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat. Plants 5, 54-62.
    Hyles, J., Bloomfield, M.T., Hunt, J.R., Trethowan, R.M.,Trevaskis, B., 2020. Phenology and related traits for wheat adaptation. Heredity 125, 417-430.
    IWGSC, 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788.
    IWGSC, 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.
    Jeffares, D.C., Jolly, C., Hoti, M., Speed, D., Shaw, L., Rallis, C., Balloux, F., Dessimoz, C., Bahler, J., Sedlazeck, F.J., 2017. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061.
    Jia, J., Zhao, G., Li, D., Wang, K., Kong, C., Deng, P., Yan, X., Zhang, X., Lu, Z., Xu, S., et al., 2023. Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement. Mol. Plant 16, 1893-1910.
    Jiao, C., Xie, X., Hao, C., Chen, L., Xie, Y., Garg, V., Zhao, L., Wang, Z., Zhang, Y., Li, T., et al., 2024. Pan-genome bridges wheat structural variations with habitat and breeding. Nature 637, 384-393.
    Kale, S.M., Schulthess, A.W., Padmarasu, S., Boeven, P.H.G., Schacht, J., Himmelbach, A., Steuernagel, B., Wulff, B.B.H., Reif, J.C., Stein, N., et al., 2022. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol. J. 20, 1730-1742.
    Kamran, A., Iqbal, M.,Spaner, D., 2014. Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197, 1-26.
    Kang, M., Wu, H., Liu, H., Liu, W., Zhu, M., Han, Y., Liu, W., Chen, C., Song, Y., Tan, L., et al., 2023. The pan-genome and local adaptation of Arabidopsis thaliana. Nat. Commun. 14, 6259.
    Kursel, L.E.,Malik, H.S., 2016. Centromeres. Curr. Biol. 26, R487-R490.
    Langmead, B.,Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
    Li, H., Feng, X.,Chu, C., 2020. The design and construction of reference pangenome graphs with minigraph. Genome Biol. 21, 265.
    Li, H., Wang, S., Chai, S., Yang, Z., Zhang, Q., Xin, H., Xu, Y., Lin, S., Chen, X., Yao, Z., et al., 2022. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat. Commun. 13, 682.
    Li, Y.H., Zhou, G., Ma, J., Jiang, W., Jin, L.G., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., et al., 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045-1052.
    Lian, Q., Huettel, B., Walkemeier, B., Mayjonade, B., Lopez-Roques, C., Gil, L., Roux, F., Schneeberger, K.,Mercier, R., 2024. A pan-genome of 69 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range. Nat. Genet. 56, 982-991.
    Liu, J., Chen, Z., Wang, Z., Zhang, Z., Xie, X., Wang, Z., Chai, L., Song, L., Cheng, X., Feng, M., et al., 2021. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. Mol. Plant 14, 1472-1488.
    Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.A., Zhang, H., Liu, Z., Shi, M., et al., 2020. Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.e113.
    Logsdon, G.A., Rozanski, A.N., Ryabov, F., Potapova, T., Shepelev, V.A., Catacchio, C.R., Porubsky, D., Mao, Y., Yoo, D., Rautiainen, M., et al., 2024. The variation and evolution of complete human centromeres. Nature 629, 136-145.
    Lu, F.-H., McKenzie, N., Gardiner, L.-J., Luo, M.-C., Hall, A.,Bevan, M.W., 2020. Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of diploid Aegilops tauschii and hexaploid wheat. GigaScience 9, giaa070.
    Lyu, X., Xia, Y., Wang, C., Zhang, K., Deng, G., Shen, Q., Gao, W., Zhang, M., Liao, N., Ling, J., et al., 2023. Pan-genome analysis sheds light on structural variation-based dissection of agronomic traits in melon crops. Plant Physiol. 193, 1330-1348.
    Ma, H., Ding, W., Chen, Y., Zhou, J., Chen, W., Lan, C., Mao, H., Li, Q., Yan, W.,Su, H., 2023. Centromere plasticity with evolutionary conservation and divergence uncovered by wheat 10+ genomes. Mol. Biol. Evol. 40, msad176.
    Marcais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L.,Zimin, A., 2018. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944.
    Monson, R.K.,Sage, R.F., 1999. C4 Plant Biology.
    Montenegro, J.D., Golicz, A.A., Bayer, P.E., Hurgobin, B., Lee, H., Chan, C.K., Visendi, P., Lai, K., Dolezel, J.,Batley, J., 2017. The pangenome of hexaploid bread wheat. Plant J. 90, 1007-1013.
    Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J.R.A., Hellinga, A.J., Lugo, C.S.B., Elliott, T.A., Ware, D., Peterson, T., et al., 2019. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275.
    Outten, J.,Warren, A., 2021. Methods and developments in graphical pangenomics. J. Indian Inst. Sci. 101, 485-498.
    Pei, H., Li, Y., Liu, Y., Liu, P., Zhang, J., Ren, X.,Lu, Z., 2023a. Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development. aBIOTECH 4, 8-19.
    Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y.,Lu, Z., 2023b. Low-affinity spl binding sites contribute to subgenome expression divergence in allohexaploid wheat. Sci. China Life Sci. 66, 819-834.
    Pont, C., Leroy, T., Seidel, M., Tondelli, A., Duchemin, W., Armisen, D., Lang, D., Bustos-Korts, D., Goue, N., Balfourier, F., et al., 2019. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905-911.
    Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., et al., 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542-3558 e3516.
    Quinlan, A.R.,Hall, I.M., 2010. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.
    Rangan, P., Furtado, A.,Henry, R.J., 2016. New evidence for grain specific C4 photosynthesis in wheat. Sci. Rep. 6, 31721.
    Rasheed, A., Qayyum, H.,Appels, R. 2024. Genome-informed discovery of genes and framework of functional genes in wheat, in: Appels, R., Eversole, K., Feuillet, C., Gallagher, D. (Eds.), The Wheat Genome. Springer International Publishing, Cham, pp. 165-186.
    Sato, K., Abe, F., Mascher, M., Haberer, G., Gundlach, H., Spannagl, M., Shirasawa, K.,Isobe, S., 2021. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar 'Fielder'. DNA Res. 28, dsab008.
    Schreiber, M., Jayakodi, M., Stein, N.,Mascher, M., 2024. Plant pangenomes for crop improvement, biodiversity and evolution. Nat. Rev. Genet. 25, 563-577.
    Scott, M.F., Fradgley, N., Bentley, A.R., Brabbs, T., Corke, F., Gardner, K.A., Horsnell, R., Howell, P., Ladejobi, O., Mackay, I.J., et al., 2021. Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol. 22, 137.
    Shi, J., Tian, Z., Lai, J.,Huang, X., 2023. Plant pan-genomics and its applications. Mol. Plant 16, 168-186.
    Shi, T., Zhang, X., Hou, Y., Jia, C., Dan, X., Zhang, Y., Jiang, Y., Lai, Q., Feng, J., Feng, J., et al., 2024. The super-pangenome of populus unveils genomic facets for its adaptation and diversification in widespread forest trees. Mol. Plant 17, 725-746.
    Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V.,Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212.
    Song, B., Marco-Sola, S., Moreto, M., Johnson, L., Buckler, E.S.,Stitzer, M.C., 2022. AnchorWave: sensitive alignment of genomes with high sequence diversity, extensive structural polymorphism, and whole-genome duplication. Proc. Natl. Acad. Sci. U. S. A. 119, e2113075119.
    Su, H., Liu, Y., Liu, C., Shi, Q., Huang, Y.,Han, F., 2019. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell 31, 2035-2051.
    Tian, X., Li, R., Fu, W., Li, Y., Wang, X., Li, M., Du, D., Tang, Q., Cai, Y., Long, Y., et al., 2020. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Sci. China Life Sci. 63, 750-763.
    Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., et al., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283.
    Wang, M., Wang, Y., Li, X., Zhang, Y., Chen, X., Liu, J., Qiua, Y.,Wang, A., 2024. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. Hortic. Res. 11, uhad277.
    Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49.
    Wang, Z., Wang, W., Xie, X., Wang, Y., Yang, Z., Peng, H., Xin, M., Yao, Y., Hu, Z., Liu, J., et al., 2022. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat. Commun. 13, 3891.
    Wick, R.R., Schultz, M.B., Zobel, J.,Holt, K.E., 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352.
    Wysokar, A., Tibbetts, K., McCown, M., Homer, N.,Fennell, T., 2014. Picard: a set of tools for working with next generation sequencing data in BAM format. Retrieved Aug 2014 from http://picardsourceforgenet.
    Yan, H., Sun, M., Zhang, Z., Jin, Y., Zhang, A., Lin, C., Wu, B., He, M., Xu, B., Wang, J., et al., 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat. Genet. 55, 507-518.
    Zhang, Z., Zhang, J., Kang, L., Qiu, X., Xu, S., Xu, J., Guo, Y., Niu, Z., Niu, B., Bi, A., et al., 2023. Structural variation discovery in wheat using PacBio high-fidelity sequencing. bioRxiv, 2023.2012.2008.570887.
    Zhang, Y., Zhao, M., Tan, J., Huang, M., Chu, X., Li, Y., Han, X., Fang, T., Tian, Y., Jarret, R., et al., 2024. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat. Genet. 56, 1750-1761.
    Zhao, J., Xie, Y., Kong, C., Lu, Z., Jia, H., Ma, Z., Zhang, Y., Cui, D., Ru, Z., Wang, Y., et al., 2023a. Centromere repositioning and shifts in wheat evolution. Plant Commun. 4, 100556.
    Zhao, L., Yang, Y., Chen, J., Lin, X., Zhang, H., Wang, H., Wang, H., Bie, X., Jiang, J., Feng, X., et al., 2023b. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol. 24, 7.
    Zhou, Y., Zhang, Z., Bao, Z., Li, H., Lyu, Y., Zan, Y., Wu, Y., Cheng, L., Fang, Y., Wu, K., et al., 2022. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527-534.
    Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Y., Wang, Y.G., et al., 2020. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412-1422.
    Zhu, T., Wang, L., Rimbert, H., Rodriguez, J.C., Deal, K.R., De Oliveira, R., Choulet, F., Keeble-Gagnere, G., Tibbits, J., Rogers, J., et al., 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 107, 303-314.
    Zimin, A.V., Puiu, D., Hall, R., Kingan, S., Clavijo, B.J.,Salzberg, S.L., 2017. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience, 6, gix097.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return