Alonge, M., Lebeigle, L., Kirsche, M., Jenike, K., Ou, S., Aganezov, S., Wang, X., Lippman, Z.B., Schatz, M.C.,Soyk, S., 2022. Automated assembly scaffolding using ragtag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258.
|
Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., Ciren, D., et al., 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145-161.
|
Athiyannan, N., Abrouk, M., Boshoff, W.H.P., Cauet, S., Rodde, N., Kudrna, D., Mohammed, N., Bettgenhaeuser, J., Botha, K.S., Derman, S.S., et al., 2022. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227-231.
|
Aury, J.-M., Engelen, S., Istace, B., Monat, C., Lasserre-Zuber, P., Belser, C., Cruaud, C., Rimbert, H., Leroy, P., Arribat, S., et al., 2022. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience 11, giac034.
|
Baird, L.M., Berndsen, C.E.,Monroe, J.D., 2024. Malate dehydrogenase in plants: evolution, structure, and a myriad of functions. Essays Biochem. 68, 221-233.
|
Bayer, P.E., Golicz, A.A., Scheben, A., Batley, J.,Edwards, D., 2020. Plant pan-genomes are the new reference. Nat. Plants 6, 914-920.
|
Bayer, P.E., Petereit, J., Durant, E., Monat, C., Rouard, M., Hu, H., Chapman, B., Li, C., Cheng, S., Batley, J., et al., 2022. Wheat panache: a pangenome graph database representing presence-absence variation across sixteen bread wheat genomes. Plant Genome 15, e20221.
|
Beales, J., Turner, A., Griffiths, S., Snape, J.W.,Laurie, D.A., 2007. A Pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721-733.
|
Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L., D'Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., et al., 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710.
|
Cavanagh, C.R., Chao, S., Wang, S., Huang, B.E., Stephen, S., Kiani, S., Forrest, K., Saintenac, C., Brown-Guedira, G.L.,Akhunova, A., 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. U. S. A. 110, 8057-8062.
|
Chen, C., Wu, S., Sun, Y., Zhou, J., Chen, Y., Zhang, J., Birchler, J.A., Han, F., Yang, N.,Su, H., 2024. Three near-complete genome assemblies reveal substantial centromere dynamics from diploid to tetraploid in Brachypodium genus. Genome Biol. 25, 63.
|
Chen, J., Liu, Y., Liu, M., Guo, W., Wang, Y., He, Q., Chen, W., Liao, Y., Zhang, W., Gao, Y., et al., 2023. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat. Genet. 55, 2243-2254.
|
Chen, S., Zhou, Y., Chen, Y.,Gu, J., 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
|
Cheng, H., Liu, J., Wen, J., Nie, X., Xu, L., Chen, N., Li, Z., Wang, Q., Zheng, Z., Li, M., et al., 2019. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20, 136.
|
Cheng, S., Feng, C., Wingen, L.U., Cheng, H., Riche, A.B., Jiang, M., Leverington-Waite, M., Huang, Z., Collier, S., Orford, S., et al., 2024. Harnessing landrace diversity empowers wheat breeding. Nature 632, 823-831.
|
Clavijo, B.J., Venturini, L., Schudoma, C., Accinelli, G.G., Kaithakottil, G., Wright, J., Borrill, P., Kettleborough, G., Heavens, D., Chapman, H., et al., 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885-896.
|
Collins, R.E.,Higgs, P.G., 2012. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413-3425.
|
Consortium, T.C.P.-G., 2016. Computational pan-genomics: status, promises and challenges. Briefings Bioinf. 19, 118-135.
|
Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., et al., 2021. Twelve years of samtools and bcftools. GigaScience 10, giab008.
|
Eizenga, J.M., Novak, A.M., Sibbesen, J.A., Heumos, S., Ghaffaari, A., Hickey, G., Chang, X., Seaman, J.D., Rounthwaite, R., Ebler, J., et al., 2020. Pangenome graphs. Annu. Rev. Genom. Hum. Genet. 21, 139-162.
|
Emms, D.M.,Kelly, S., 2019. Orthofinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238.
|
FAO, 2022. Agricultural Production Statistics 2000-2020. FAOSTAT Analytical Brief Series 41. Rome.
|
Feng, J., Liu, T., Qin, B., Zhang, Y.,Liu, X.S., 2012. Identifying CHIP-seq enrichment using MACS. Nat. Protoc. 7, 1728-1740.
|
Goel, M.,Schneeberger, K., 2022. Plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics 38, 2922-2926.
|
Goel, M., Sun, H., Jiao, W.B.,Schneeberger, K., 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277.
|
Golicz, A.A., Bayer, P.E., Barker, G.C., Edger, P.P., Kim, H.R., Martinez, P.A., Chan, C.K.K., Severnellis, A., Mccombie, W.R.,Parkin, I.A.P., 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 7, 13390.
|
Guo, W., Xin, M., Wang, Z., Yao, Y., Hu, Z., Song, W., Yu, K., Chen, Y., Wang, X., Guan, P., et al., 2020. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 11, 5085.
|
Guo, Z., Song, Y., Zhou, R., Ren, Z.,Jia, J., 2010. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol. 185, 841-851.
|
Huang, X., Rymbekova, A., Dolgova, O., Lao, O.,Kuhlwilm, M., 2023. Harnessing deep learning for population genetic inference. Nat. Rev. Genet. 25, 61-78.
|
Hubner, S., Bercovich, N., Todesco, M., Mandel, J.R., Odenheimer, J., Ziegler, E., Lee, J.S., Baute, G.J., Owens, G.L., Grassa, C.J., et al., 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat. Plants 5, 54-62.
|
Hyles, J., Bloomfield, M.T., Hunt, J.R., Trethowan, R.M.,Trevaskis, B., 2020. Phenology and related traits for wheat adaptation. Heredity 125, 417-430.
|
IWGSC, 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788.
|
IWGSC, 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.
|
Jeffares, D.C., Jolly, C., Hoti, M., Speed, D., Shaw, L., Rallis, C., Balloux, F., Dessimoz, C., Bahler, J., Sedlazeck, F.J., 2017. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061.
|
Jia, J., Zhao, G., Li, D., Wang, K., Kong, C., Deng, P., Yan, X., Zhang, X., Lu, Z., Xu, S., et al., 2023. Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement. Mol. Plant 16, 1893-1910.
|
Jiao, C., Xie, X., Hao, C., Chen, L., Xie, Y., Garg, V., Zhao, L., Wang, Z., Zhang, Y., Li, T., et al., 2024. Pan-genome bridges wheat structural variations with habitat and breeding. Nature 637, 384-393.
|
Kale, S.M., Schulthess, A.W., Padmarasu, S., Boeven, P.H.G., Schacht, J., Himmelbach, A., Steuernagel, B., Wulff, B.B.H., Reif, J.C., Stein, N., et al., 2022. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol. J. 20, 1730-1742.
|
Kamran, A., Iqbal, M.,Spaner, D., 2014. Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197, 1-26.
|
Kang, M., Wu, H., Liu, H., Liu, W., Zhu, M., Han, Y., Liu, W., Chen, C., Song, Y., Tan, L., et al., 2023. The pan-genome and local adaptation of Arabidopsis thaliana. Nat. Commun. 14, 6259.
|
Kursel, L.E.,Malik, H.S., 2016. Centromeres. Curr. Biol. 26, R487-R490.
|
Langmead, B.,Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
|
Li, H., Feng, X.,Chu, C., 2020. The design and construction of reference pangenome graphs with minigraph. Genome Biol. 21, 265.
|
Li, H., Wang, S., Chai, S., Yang, Z., Zhang, Q., Xin, H., Xu, Y., Lin, S., Chen, X., Yao, Z., et al., 2022. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat. Commun. 13, 682.
|
Li, Y.H., Zhou, G., Ma, J., Jiang, W., Jin, L.G., Zhang, Z., Guo, Y., Zhang, J., Sui, Y., Zheng, L., et al., 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045-1052.
|
Lian, Q., Huettel, B., Walkemeier, B., Mayjonade, B., Lopez-Roques, C., Gil, L., Roux, F., Schneeberger, K.,Mercier, R., 2024. A pan-genome of 69 Arabidopsis thaliana accessions reveals a conserved genome structure throughout the global species range. Nat. Genet. 56, 982-991.
|
Liu, J., Chen, Z., Wang, Z., Zhang, Z., Xie, X., Wang, Z., Chai, L., Song, L., Cheng, X., Feng, M., et al., 2021. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. Mol. Plant 14, 1472-1488.
|
Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.A., Zhang, H., Liu, Z., Shi, M., et al., 2020. Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.e113.
|
Logsdon, G.A., Rozanski, A.N., Ryabov, F., Potapova, T., Shepelev, V.A., Catacchio, C.R., Porubsky, D., Mao, Y., Yoo, D., Rautiainen, M., et al., 2024. The variation and evolution of complete human centromeres. Nature 629, 136-145.
|
Lu, F.-H., McKenzie, N., Gardiner, L.-J., Luo, M.-C., Hall, A.,Bevan, M.W., 2020. Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of diploid Aegilops tauschii and hexaploid wheat. GigaScience 9, giaa070.
|
Lyu, X., Xia, Y., Wang, C., Zhang, K., Deng, G., Shen, Q., Gao, W., Zhang, M., Liao, N., Ling, J., et al., 2023. Pan-genome analysis sheds light on structural variation-based dissection of agronomic traits in melon crops. Plant Physiol. 193, 1330-1348.
|
Ma, H., Ding, W., Chen, Y., Zhou, J., Chen, W., Lan, C., Mao, H., Li, Q., Yan, W.,Su, H., 2023. Centromere plasticity with evolutionary conservation and divergence uncovered by wheat 10+ genomes. Mol. Biol. Evol. 40, msad176.
|
Marcais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L.,Zimin, A., 2018. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944.
|
Monson, R.K.,Sage, R.F., 1999. C4 Plant Biology.
|
Montenegro, J.D., Golicz, A.A., Bayer, P.E., Hurgobin, B., Lee, H., Chan, C.K., Visendi, P., Lai, K., Dolezel, J.,Batley, J., 2017. The pangenome of hexaploid bread wheat. Plant J. 90, 1007-1013.
|
Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J.R.A., Hellinga, A.J., Lugo, C.S.B., Elliott, T.A., Ware, D., Peterson, T., et al., 2019. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275.
|
Outten, J.,Warren, A., 2021. Methods and developments in graphical pangenomics. J. Indian Inst. Sci. 101, 485-498.
|
Pei, H., Li, Y., Liu, Y., Liu, P., Zhang, J., Ren, X.,Lu, Z., 2023a. Chromatin accessibility landscapes revealed the subgenome-divergent regulation networks during wheat grain development. aBIOTECH 4, 8-19.
|
Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y.,Lu, Z., 2023b. Low-affinity spl binding sites contribute to subgenome expression divergence in allohexaploid wheat. Sci. China Life Sci. 66, 819-834.
|
Pont, C., Leroy, T., Seidel, M., Tondelli, A., Duchemin, W., Armisen, D., Lang, D., Bustos-Korts, D., Goue, N., Balfourier, F., et al., 2019. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905-911.
|
Qin, P., Lu, H., Du, H., Wang, H., Chen, W., Chen, Z., He, Q., Ou, S., Zhang, H., Li, X., et al., 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542-3558 e3516.
|
Quinlan, A.R.,Hall, I.M., 2010. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.
|
Rangan, P., Furtado, A.,Henry, R.J., 2016. New evidence for grain specific C4 photosynthesis in wheat. Sci. Rep. 6, 31721.
|
Rasheed, A., Qayyum, H.,Appels, R. 2024. Genome-informed discovery of genes and framework of functional genes in wheat, in: Appels, R., Eversole, K., Feuillet, C., Gallagher, D. (Eds.), The Wheat Genome. Springer International Publishing, Cham, pp. 165-186.
|
Sato, K., Abe, F., Mascher, M., Haberer, G., Gundlach, H., Spannagl, M., Shirasawa, K.,Isobe, S., 2021. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar 'Fielder'. DNA Res. 28, dsab008.
|
Schreiber, M., Jayakodi, M., Stein, N.,Mascher, M., 2024. Plant pangenomes for crop improvement, biodiversity and evolution. Nat. Rev. Genet. 25, 563-577.
|
Scott, M.F., Fradgley, N., Bentley, A.R., Brabbs, T., Corke, F., Gardner, K.A., Horsnell, R., Howell, P., Ladejobi, O., Mackay, I.J., et al., 2021. Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol. 22, 137.
|
Shi, J., Tian, Z., Lai, J.,Huang, X., 2023. Plant pan-genomics and its applications. Mol. Plant 16, 168-186.
|
Shi, T., Zhang, X., Hou, Y., Jia, C., Dan, X., Zhang, Y., Jiang, Y., Lai, Q., Feng, J., Feng, J., et al., 2024. The super-pangenome of populus unveils genomic facets for its adaptation and diversification in widespread forest trees. Mol. Plant 17, 725-746.
|
Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V.,Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212.
|
Song, B., Marco-Sola, S., Moreto, M., Johnson, L., Buckler, E.S.,Stitzer, M.C., 2022. AnchorWave: sensitive alignment of genomes with high sequence diversity, extensive structural polymorphism, and whole-genome duplication. Proc. Natl. Acad. Sci. U. S. A. 119, e2113075119.
|
Su, H., Liu, Y., Liu, C., Shi, Q., Huang, Y.,Han, F., 2019. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell 31, 2035-2051.
|
Tian, X., Li, R., Fu, W., Li, Y., Wang, X., Li, M., Du, D., Tang, Q., Cai, Y., Long, Y., et al., 2020. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Sci. China Life Sci. 63, 750-763.
|
Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., et al., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283.
|
Wang, M., Wang, Y., Li, X., Zhang, Y., Chen, X., Liu, J., Qiua, Y.,Wang, A., 2024. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. Hortic. Res. 11, uhad277.
|
Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49.
|
Wang, Z., Wang, W., Xie, X., Wang, Y., Yang, Z., Peng, H., Xin, M., Yao, Y., Hu, Z., Liu, J., et al., 2022. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat. Commun. 13, 3891.
|
Wick, R.R., Schultz, M.B., Zobel, J.,Holt, K.E., 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350-3352.
|
Wysokar, A., Tibbetts, K., McCown, M., Homer, N.,Fennell, T., 2014. Picard: a set of tools for working with next generation sequencing data in BAM format. Retrieved Aug 2014 from http://picardsourceforgenet.
|
Yan, H., Sun, M., Zhang, Z., Jin, Y., Zhang, A., Lin, C., Wu, B., He, M., Xu, B., Wang, J., et al., 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat. Genet. 55, 507-518.
|
Zhang, Z., Zhang, J., Kang, L., Qiu, X., Xu, S., Xu, J., Guo, Y., Niu, Z., Niu, B., Bi, A., et al., 2023. Structural variation discovery in wheat using PacBio high-fidelity sequencing. bioRxiv, 2023.2012.2008.570887.
|
Zhang, Y., Zhao, M., Tan, J., Huang, M., Chu, X., Li, Y., Han, X., Fang, T., Tian, Y., Jarret, R., et al., 2024. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat. Genet. 56, 1750-1761.
|
Zhao, J., Xie, Y., Kong, C., Lu, Z., Jia, H., Ma, Z., Zhang, Y., Cui, D., Ru, Z., Wang, Y., et al., 2023a. Centromere repositioning and shifts in wheat evolution. Plant Commun. 4, 100556.
|
Zhao, L., Yang, Y., Chen, J., Lin, X., Zhang, H., Wang, H., Wang, H., Bie, X., Jiang, J., Feng, X., et al., 2023b. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol. 24, 7.
|
Zhou, Y., Zhang, Z., Bao, Z., Li, H., Lyu, Y., Zan, Y., Wu, Y., Cheng, L., Fang, Y., Wu, K., et al., 2022. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527-534.
|
Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Y., Wang, Y.G., et al., 2020. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412-1422.
|
Zhu, T., Wang, L., Rimbert, H., Rodriguez, J.C., Deal, K.R., De Oliveira, R., Choulet, F., Keeble-Gagnere, G., Tibbits, J., Rogers, J., et al., 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 107, 303-314.
|
Zimin, A.V., Puiu, D., Hall, R., Kingan, S., Clavijo, B.J.,Salzberg, S.L., 2017. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience, 6, gix097.
|