9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 6
Jun.  2025
Turn off MathJax
Article Contents

Phenotypic advantages and improved genomic stability following selection in advanced selfing-generations of Brassica allohexaploids

doi: 10.1016/j.jgg.2025.03.004
Funds:

This work was supported by the Sino-German Research Project (GZ 1362), Grains Research and Development Corporation International Visiting Fellowship (UWA2406-010BGX), the National Natural Science Foundation of China (32171982), and the Fundamental Research Funds for the Central Universities of the Chinese Government (2662023PY004).

  • Received Date: 2024-11-12
  • Accepted Date: 2025-03-05
  • Rev Recd Date: 2025-03-05
  • Available Online: 2025-07-11
  • Publish Date: 2025-03-14
  • Allopolyploids often exhibit advantages in vigor and adaptability compared to diploids. A long-term goal in the economically important Brassica genus has been to develop a new allohexaploid crop type (AABBCC) by combining different diploid and allotetraploid crop species. However, early-generation allohexaploids often face challenges like unstable meiosis and low fertility, and the phenotypic performance of these synthetic lines has rarely been assessed. This study analyzes agronomic traits, fertility, and genome stability in ArArBcBcCcCc lines derived from four crosses between B. carinata and B. rapa after 9–11 selfing generations. Our results demonstrate polyploid advantage in vigor and seed traits, considerable phenotypic variation, and high fertility and genome stability. Meanwhile, parental genotypes significantly influence outcomes in advanced allohexaploids. Structural variants, largely resulting from A–C homoeologous exchanges, contribute to genomic variation and influence hexaploid genome stability, with the A sub-genome showing the highest variability. Both positive and negative impacts of SVs on fertility and seed weight are observed. Pseudo-euploids, frequently appearing, do not significantly affect fertility or other agronomic traits compared to euploids, indicating a potential pathway toward a stable allohexaploid species. These findings provide insights into the challenge and potential for developing an adaptable and stable Brassica hexaploid through selection.
  • loading
  • Bian, Y., Yang, C., Ou, X., Zhang, Z., Wang, B., Ma, W., Gong, L., Zhang, H., Liu, B., 2018. Meiotic chromosome stability of a newly formed allohexaploid wheat is facilitated by selection under abiotic stress as a spandrel. New Phytol. 220, 262-277.
    Boeva, V., Zinovyev, A., Bleakley, K., Vert, J.P., Janoueix-Lerosey, I., Delattre, O., Barillot, E., 2011. Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics 27, 268-269.
    Cai, B., Wang, T., Yue, F., Harun, A., Zhu, B., Qian, W., Ge, X., Li, Z., 2022. Production and cytology of Brassica autoallohexaploids with two and four copies of two subgenomes. Theor. Appl. Genet. 135, 2641-2653.
    Cai, X., Chang, L., Zhang, T., Chen, H., Zhang, L., Lin, R., Liang, J., Wu, J., Freeling, M., Wang, X., 2021. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biol. 22, 166.
    Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A.P., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., et al., 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950-953.
    Chawla, H.S., Lee, H., Gabur, I., Vollrath, P., Tamilselvan-Nattar-Amutha, S., Obermeier, C., Schiessl, S.V., Song, J.M., Liu, K., Guo, L., et al., 2021. Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnol J. 19, 240-250.
    Chen, S., Nelson, M.N., Chevre, A.M., Jenczewski, E., Li, Z.Y., Mason, A.S., Meng, J.L., Plummer, J.A., Pradhan, A., Siddique, K.H.M., et al., 2011. Trigenomic Bridges for Brassica Improvement. Crit. Rev. Plant Sci. 30, 524-547.
    Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
    Chester, M., Gallagher, J.P., Symonds, V.V., Cruz da Silva, A.V., Mavrodiev, E.V., Leitch, A.R., Soltis, P.S., Soltis, D.E., 2012. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. U. S. A. 109, 1176-1181.
    Dubcovsky, J., Dvorak, J., 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862-1866.
    Edger, P.P., Heidel-Fischer, H.M., Bekaert, M., Rota, J., Glockner, G., Platts, A.E., Heckel, D.G., Der, J.P., Wafula, E.K., Tang, M., et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl. Acad. Sci. U. S. A. 112, 8362-8366.
    Feldmann, M.J., Pincot, D.D.A., Seymour, D.K., Famula, R.A., Jimenez, N.P., Lopez, C.M., Cole, G.S., Knapp, S.J., 2024. A dominance hypothesis argument for historical genetic gains and the fixation of heterosis in octoploid strawberry. Genetics 228, iyae159.
    Fox, P., Skovmand, B., Thompson, B., Braun, H.-J., Cormier, R., 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47, 57-64.
    Fu, D., Mason, A.S., Xiao, M., Yan, H., 2016. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. Plant Sci. 242, 37-46.
    Fu, Z.-y., Song, J.-c., Jameson, P.E., 2017. A rapid and cost effective protocol for plant genomic DNA isolation using regenerated silica columns in combination with CTAB extraction. J. Integr. Agric. 16, 1682-1688.
    Gaebelein, R., Mason, A., 2018. Allohexaploids in the Genus Brassica. Crit. Rev. Plant Sci. 37, 1-16.
    Gaeta, R.T., Chris Pires, J., 2010. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol.186, 18-28.
    Ge, X.H., Li, Z.Y., 2007. Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis. Chromosome Res. 15, 849-861.
    Geng, X.X., Chen, S., Astarini, I.A., Yan, G.J., Tian, E., Meng, J., Li, Z.Y., Ge, X.H., Nelson, M.N., Mason, A.S., et al., 2013. Doubled haploids of novel trigenomic Brassica derived from various interspecific crosses. Plant Cell Tissue Organ Cult. 113, 501-511.
    Guo, H., Mendrikahy, J.N., Xie, L., Deng, J., Liu, X., 2017. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci. Rep. 7, 40139.
    Hu, D.D., Lu, J., Li, W.W., Yang, Y.H., Xu, J.X., Qin, H., Wang, H., Niu, Y., Zhang, H.Q., Liu, Q.Q., et al., 2024. The occurrence, inheritance, and segregation of complex genomic structural variation in synthetic Brassica napus. Crop J. 12, 515-528.
    Hurgobin, B., Golicz, A.A., Bayer, P.E., Chan, C.K., Tirnaz, S., Dolatabadian, A., Schiessl, S.V., Samans, B., Montenegro, J.D., Parkin, I.A.P., et al., 2018. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J. 16, 1265-1274.
    Jiao, Y., Wickett, N.J., Ayyampalayam, S., S.Chanderbali, A., Landherr, L., Ralph, P.E., Tomsho, L.P., Hu, Y., Liang, H., Soltis, P.S., 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97-100.
    Katche, E.I., Schierholt, A., Becker, H.C., Batley, J., Mason, A.S., 2023. Fertility, genome stability, and homozygosity in a diverse set of resynthesized rapeseed lines. Crop J. 11, 468-477.
    Lagercrantz, U., Lydiate, D.J., 1996. Comparative genome mapping in Brassica. Genetics 144, 1903-1910.
    Li, A., Liu, D., Yang, W., Kishii, M., Mao, L., 2018. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 4, 552-558.
    Li, M., Sun, W., Wang, F., Wu, X., Wang, J., 2021. Asymmetric epigenetic modification and homoeolog expression bias in the establishment and evolution of allopolyploid Brassica napus. New Phytol. 232, 898-913.
    Li, Z., Liu, H., Luo, P., 1995. Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor. Appl. Genet. 91, 131-136.
    Lichman, B.R., Godden, G.T., Buell, C.R., 2020. Gene and genome duplications in the evolution of chemodiversity: perspectives from studies of Lamiaceae. Curr. Opin. Plant Biol. 55, 74-83.
    Lloyd, A., Bomblies, K., 2016. Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr. Opin. Plant Biol. 30, 116-122.
    Majdi, M., Karimzadeh, G., Malboobi, M.A., Omidbaigi, R., Mirzaghaderi, G., 2010. Induction of tetraploidy to feverfew (Tanacetum parthenium Schulz-Bip.): morphological, physiological, cytological, and phytochemical changes. Hortscience 45, 16-21.
    Mason, A.S., Batley, J., Bayer, P.E., Hayward, A., Cowling, W.A., Nelson, M.N., 2014a. High-resolution molecular karyotyping uncovers pairing between ancestrally related Brassica chromosomes. New Phytol. 202, 964-974.
    Mason, A.S., Nelson, M.N., Takahira, J., Cowling, W.A., Alves, G.M., Chaudhuri, A., Chen, N., Ragu, M.E., Dalton-Morgan, J., Coriton, O., et al., 2014b. The fate of chromosomes and alleles in an allohexaploid Brassica population. Genetics 197, 273-283.
    Mason, A.S., Wendel, J.F., 2020. Homoeologous exchanges, segmental allopolyploidy, and polyploid genome evolution. Front. Genet. 11, 1014.
    Mason, A.S., Yan, G., Cowling, W.A., Nelson, M.N., 2012. A new method for producing allohexaploid Brassica through unreduced gametes. Euphytica 186, 277-287.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
    Merot, C., Oomen, R.A., Tigano, A., Wellenreuther, M., 2020. A roadmap for understanding the evolutionary significance of structural genomic variation. Trends Ecol. Evol. 35, 561-572.
    U, N., 1935. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. J.Jap.Bot. 7, 389-452.
    Nieto Feliner, G., Casacuberta, J., Wendel, J.F., 2020. Genomics of evolutionary novelty in hybrids and polyploids. Front. Genet. 11, 792.
    Niu, Y., Liu, Q.Q., He, Z., Raman, R., Wang, H., Long, X.X., Qin, H., Raman, H., Parkin, I.A.P., Bancroft, I., et al., 2024a. A Brassica carinata pan-genome platform for Brassica crop improvement. Plant Commun. 5, 100725.
    Niu, Y., Li, W.W., Yang, Y.H., Wang, H., He, Z., Qin, H., Zhang, Y.K., Hu, D.D., Wang, J., Zhang, C.Y., et al., 2024b. Creation of rapeseed germplasm with high polyunsaturated fatty acid content by wild-relative introgression from Brassica carinata. Plant Commun. 101193.
    Osborn, T.C., Chris Pires, J., Birchler, J.A., Auger, D.L., Jeffery Chen, Z., Lee, H.S., Comai, L., Madlung, A., Doerge, R.W., Colot, V., et al., 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19, 141-147.
    Parkin, I.A.P., Sharpe, A.G., Keith, D.J., Lydiate, D.J., 1995. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38, 1122-1131.
    Pele, A., Rousseau-Gueutin, M., Chevre, A.M., 2018. Speciation success of polyploid plants closely relates to the regulation of meiotic recombination. Front. Plant Sci. 9, 907.
    Qin, H., King, G.J., Borpatragohain, P., Zou, J., 2023. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. Plant Commun. 4, 100565.
    Quezada-Martinez, D., Zou, J., Zhang, W., Meng, J., Batley, J., Mason, A.S., 2022. Allele segregation analysis of F1 hybrids between independent Brassica allohexaploid lineages. Chromosoma 131, 147-161.
    Rice, A., Smarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., Meiri, S., Belmaker, J., Mayrose, I., 2019. The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265-273.
    Samans, B., Chalhoub, B., Snowdon, R.J., 2017. Surviving a genome collision: genomic signatures of allopolyploidization in the recent crop species Brassica napus. Plant Genome 10: plantgenome2017.2002.0013.
    Schelfhout, C.J., Snowdon, R., Cowling, W.A., Wroth, J.M., 2004. A PCR based B-genome-specific marker in Brassica species. Theor. Appl. Genet. 109, 917-921.
    Schiessl, S.V., Katche, E., Ihien, E., Chawla, H.S., Mason, A.S., 2019. The role of genomic structural variation in the genetic improvement of polyploid crops. Crop J. 7, 127-140.
    Soltis, D.E., Soltis, P.S., Tate, J.A., 2004. Advances in the study of polyploidy since Plant speciation. New Phytol. 161, 173-191.
    Soltis, P.S., Soltis, D.E., 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U. S. A. 97, 7051-7057.
    Song, K., Lu, P., Tang, K., Osborn, T.C., 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. U. S. A. 92, 7719-7723.
    Szadkowski, E., Eber, F., Huteau, V., Lode, M., Huneau, C., Belcram, H., Coriton, O., Manzanares-Dauleux, M.J., Delourme, R., King, G.J., et al., 2010. The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol. 186, 102-112.
    Teng, Y., Su, M., Liu, L., Chen, S., Liu, X., 2023. Creating and de novo improvement of new allopolyploid crops for future agriculture. Crit. Rev. Plant Sci. 42, 53-64.
    Tian, E., Jiang, Y., Chen, L., Zou, J., Liu, F., Meng, J., 2010. Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations. Theor. Appl. Genet. 121, 1431-1440.
    Van de Peer, Y., Mizrachi, E., Marchal, K., 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411-424.
    Washburn, J.D., Birchler, J.A., 2014. Polyploids as a "model system" for the study of heterosis. Plant Reprod. 27, 1-5.
    Wei, N., Cronn, R., Liston, A., Ashman, T.L., 2019. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytol. 221, 2286-2297.
    Xiong, Z., Gaeta, R.T., Pires, J.C., 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. U. S. A. 108, 7908-7913.
    Yang, S., Chen, S., Zhang, K., Li, L., Yin, Y., Gill, R.A., Yan, G., Meng, J., Cowling, W.A., Zhou, W., 2018. A high-density genetic map of an allohexaploid Brassica doubled haploid population reveals Quantitative Trait Loci for pollen viability and fertility. Front. Plant Sci. 9, 1161.
    Yim, W.C., Swain, M.L., Ma, D., An, H., Bird, K.A., Curdie, D.D., Wang, S., Ham, H.D., Luzuriaga-Neira, A., Kirkwood, J.S., et al., 2022. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. Plant Cell 34, 4143-4172.
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., et al., 2021a. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170 e1114.
    Yu, X., Wang, P., Li, J., Zhao, Q., Ji, C., Zhu, Z., Zhai, Y., Qin, X., Zhou, J., Yu, H., et al., 2021b. Whole-Genome sequence of synthesized allopolyploids in Cucumis reveals insights into the genome evolution of allopolyploidization. Adv. Sci. 8, 2004222.
    Zhang, Y.X., Wang, X.F., Niu, Y.Q., Wang, Y.G., Zhang, W.J., Song, Z.P., Yang, J., Li, L.F., 2023. Evolutionary roles of polyploidization-derived structural variations in the phenotypic diversification of Panax species. Mol. Ecol. 32, 4999-5012.
    Zou, J., Zhu, J., Huang, S., Tian, E., Xiao, Y., Fu, D., Tu, J., Fu, T., Meng, J., 2010. Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor. Appl. Genet. 120, 283-290.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return