9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

Expression quantitative trait loci (eQTL): from population genetics to precision medicine

doi: 10.1016/j.jgg.2025.02.003
Funds:

This study was supported by the Ministry of Higher Education (MOHE) Malaysia through Fundamental Research Grant Scheme (FRGS) with project code: FRGS/1/2021/STG01/UCSI/01/. SX was funded by the National Natural Science Foundation of China (NSFC) grants 32030020 and 32288101. LD was funded by the NSFC grant 32270665. The authors thank the data owners for agreeing to share the data for our analysis.

  • Received Date: 2024-11-11
  • Accepted Date: 2025-02-12
  • Rev Recd Date: 2025-02-11
  • Available Online: 2025-07-11
  • Publish Date: 2025-02-20
  • Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries, supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli. Genetic variants that regulate gene expression, known as expression quantitative trait loci (eQTL), are primarily shaped by human migration history and evolutionary forces, likewise, regulation of gene expression in principle could have been influenced by these events. Therefore, a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped. Recent studies, however, suggest that eQTL is enriched in genes that are selectively constrained. Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations. In addition, such studies are primarily dominated by the major populations of European ancestry, leaving many marginalized populations underrepresented. These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity, which potentially hinders precision medicine. This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective, subsequently discuss their influence on phenomics, as well as challenges and opportunities in the applications to precision medicine.
  • loading
  • Adhikari, K., Fontanil, T., Cal, S., Mendoza-Revilla, J., Fuentes-Guajardo, M., Chacon-Duque, J. C., Al-Saadi, F., Johansson, J. A., Quinto-Sanchez, M., Acuna-Alonzo, V., et al., 2016. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat. Commun. 7, 10815.
    Akiyama, M., 2021. Multi-omics study for interpretation of genome-wide association study. J. Hum. Genet. 66, 3-10.
    Alasoo, K., Rodrigues, J., Danesh, J., Freitag, D.F., Paul, D.S., Gaffney, D.J., 2019. Genetic effects on promoter usage are highly context-specific and contribute to complex traits. elife, 8, e41673.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. Walter, P., 2003. Molecular biology of the cell. 4th edn. Ann. Bot. 91, 401-405.
    Brown, C. D., Mangravite, L. M., Engelhardt, B. E., 2013. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet. 9, e1003649.
    Brynedal, B., Choi, J., Raj, T., Bjornson, R., Stranger, B.E., Neale, B.M., Voight, B.F., Cotsapas, C., 2017. Large-scale trans-eQTLs affect hundreds of transcripts and mediate patterns of transcriptional co-regulation. Am. J. Hum. Genet. 100, 581-591.
    Bryois, J., Calini, D., Macnair, W., Foo, L., Urich, E., Ortmann, W., Iglesias, V.A., Selvaraj, S., Nutma, E.,Marzin, M., et al., 2022. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104-1112.
    Center, M.M., Jemal, A., Smith, R.A., Ward, E., 2009. Worldwide variations in colorectal cancer. CA: A Can. J. Clin. 59, 366-378.
    Chen, Y., Liu, S., Ren, Z., Wang, F., Jiang, Y., Dai, R., Duan, F., Han, C., Ning, Z., Xia, Y., 2024. Brain eQTLs of European, African American, and Asian ancestry improve interpretation of schizophrenia gwas. medRxiv, 2024.2002. 2013.24301833.
    Cheung, V.G., Conlin, L.K., Weber, T.M., Arcaro, M., Jen, K.-Y., Morley, M., Spielman, R.S., 2003. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat. Genet. 33, 422-425.
    Cheung, V.G., Spielman, R.S., Ewens, K.G., Weber, T.M., Morley, M., Burdick, J.T., 2005. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365-1369.
    Choi, J., Lee, S.M., Norwitz, E.R., Kim, J.H., Jung, Y.M., Park, C.-W., Jun, J.K., Lee, D., Jin, Y.,Kim, S., et al., 2024. Placental expression quantitative trait loci in an East Asian population. Hum. Genet. Genom. Adv. 5, 100276.
    Coronary Artery Disease (C4D) Genetics Consortium, 2011. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat. Genet. 43, 339-344.
    D’Antonio, M., Nguyen, J. P., Arthur, T. D., Matsui, H., D’Antonio-Chronowska, A., Frazer, K. A., 2023. Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease. Nat. Commun. 14, 1132.
    Davenport, E. E., Amariuta, T., Gutierrez-Arcelus, M., Slowikowski, K., Westra, H. J., Luo, Y., Shen, C., Rao, D. A., Zhang, Y., Pearson, S., et al., 2018. Discovering in vivo cytokine-eQTL interactions from a lupus clinical trial. Genom. Biol. 19, 1-15.
    Deng, L., Pan, Y., Wang, Y., Chen, H., Yuan, K., Chen, S., Lu, D., Lu, Y., Mokhtar, S.S., Rahman, T.A., et al., 2022. Genetic connections and convergent evolution of tropical indigenous peoples in Asia. Mol. Biol. Evol. 39, msab361.
    Deng, L., Zhang, C., Yuan, K., Gao, Y., Pan, Y., Ge, X., He, Y., Yuan, Y., Lu, Y., Zhang, X., et al., 2019. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan Highlanders. Natl. Sci. Rev. 6, 1201-1222.
    Dimas, A.S., Deutsch, S., Stranger, B.E., Montgomery, S.B., Borel, C., Attar-Cohen, H., Ingle, C., Beazley, C., Arcelus, M.G., Sekowska, M., et al., 2009. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246-1250.
    Duffy, A., Verbanck, M., Dobbyn, A., Won, H. H., Rein, J. L., Forrest, I. S., Nadkarni, G., Rocheleau, G., Do, R., 2020. Tissue-specific genetic features inform prediction of drug side effects in clinical trials. Sci. Adv. 6, eabb6242.
    Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.S., Zink, F., Zhu, J., Carlson, S., Helgason, A., Walters, G.B., Gunnarsdottir, S., et al., 2008. Genetics of gene expression and its effect on disease. Nature 452, 423-428.
    Fan, H.P., Di Liao, C., Fu, B.Y., Lam, L.C.,T ang, N.L., 2009. Interindividual and interethnic variation in genomewide gene expression: Insights into the biological variation of gene expression and clinical implications. Clin. Chem. 55, 774-785.
    Favoriti, P., Carbone, G., Greco, M., Pirozzi, F., Pirozzi, R.E.M., Corcione, F., 2016. Worldwide burden of colorectal cancer: A review. Updates Surg. 68, 7-11.
    Feng, Z., Ren, X., Duren, Z., Wang, Y., 2022. Human genetic variants associated with COVID-19 severity are enriched in immune and epithelium regulatory networks. Phenomics 2, 389-403.
    Flynn, E.D., Tsu, A.L., Kasela, S., Kim-Hellmuth, S., Aguet, F., Ardlie, K.G., Bussemaker, H.J., Mohammadi, P., Lappalainen, T., 2022. Transcription factor regulation of eQTLs activity across individuals and tissues. PLoS Genet. 18, e1009719.
    Francesconi, M., Lehner, B., 2014. The effects of genetic variation on gene expression dynamics during development. Nature 505, 208-211.
    Fu, J., Wolfs, M.G., Deelen, P., Westra, H.-J., Fehrmann, R.S., Te Meerman, G.J., Buurman, W.A., Rensen, S.S., Groen, H.J., Weersma, R.K., et al., 2012. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet. 8, e1002431.
    Gay, N.R., Gloudemans, M., Antonio, M.L., Abell, N.S., Balliu, B., Park, Y., Martin, A.R., Musharoff, S., Rao, A.S., Aguet, F., et al., 2020. Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. Genome Biol. 21, 1-20.
    Gilchrist, J.J., Makino, S., Naranbhai, V., Sharma, P.K., Koturan, S., Tong, O., Taylor, C.A., Watson, R.A., de Los Aires, A.V., Cooper, R., et al., 2022. Natural killer cells demonstrate distinct eqtl and transcriptome-wide disease associations, highlighting their role in autoimmunity. Nat. Commun. 13, 4073.
    Gillies, C. E., Putler, R., Menon, R., Otto, E., Yasutake, K., Nair, V., Hoover, P., Lieb, D., Li, S., Eddy, S., et al., 2018. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232-244.
    Glassberg, E.C., Gao, Z., Harpak, A., Lan, X., Pritchard, J.K., 2019. Evidence for weak selective constraint on human gene expression. Genetics 211, 757-772.
    Goring, H.H., 2012. Tissue specificity of genetic regulation of gene expression. Nat Genet. 44, 1077-1078.
    Grossman, S.R., Andersen, K.G., Shlyakhter, I., Tabrizi, S., Winnicki, S., Yen, A., Park, D.J., Griesemer, D., Karlsson, E.K., Wong, S.H., et al., 2013. Identifying recent adaptations in large-scale genomic data. Cell 152, 703-713.
    GTEx Consortium, Ardlie, K.G., Deluca, D.S., Segre, A.V., Sullivan, T.J., Young, T.R., Gelfand, E.T., Trowbridge, C.A., Maller, J.B., Tukiainen, T., et al., 2015. The genotype-tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 348, 648-660.
    GTEx Consortium, 2017. Genetic effects on gene expression across human tissues. Nature 550, 204-213.
    GTEx Consortium, 2020a. Cell type-specific genetic regulation of gene expression across human tissues. Science 369, eaaz8528.
    GTEx Consortium, 2020b. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318-1330.
    Han, C., Chen, Y., Liang, Q., Gu, H., Guo, M., Chen, C., Liu, C., 2024. Genetic regulation of the gene expression in fetal and adult brains explains gwas signals from the East Asian population. Euro. Neuropsychopharm. 87, 57.
    Harrison, G.F., Sanz, J., Boulais, J., Mina, M.J., Grenier, J.-C., Leng, Y., Dumaine, A., Yotova, V., Bergey, C.M., Nsobya, S.L., et al., 2019. Natural selection contributed to immunological differences between hunter-gatherers and agriculturalists. Nat. Ecol. Evol. 3, 1253-1264.
    Heinzen, E.L., Ge, D., Cronin, K.D., Maia, J.M., Shianna, K.V., Gabriel, W.N., Welsh-Bohmer, K.A., Hulette, C.M., Denny, T.N., Goldstein, D.B., 2008. Tissue-specific genetic control of splicing: Implications for the study of complex traits. PLoS Biol. 6, e1000001.
    Hernandez, D.G., Nalls, M.A., Moore, M., Chong, S., Dillman, A., Trabzuni, D., Gibbs, J.R., Ryten, M., Arepalli, S., Weale, M.E., et al., 2012. Integration of gwas snps and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain. Neurobiol. Dis. 47, 20-28.
    Hodgson, J.A., Pickrell, J.K., Pearson, L.N., Quillen, E.E., Prista, A., Rocha, J., Soodyall, H., Shriver, M.D., Perry, G.H., 2014. Natural selection for the Duffy-null allele in the recently admixed people of Madagascar. Proc. Biol. Sci. 281, 20140930.
    Hoffman, J.D., Graff, R.E., Emami, N.C., Tai, C.G., Passarelli, M.N., Hu, D., Huntsman, S., Hadley, D., Leong, L., Majumdar, A., et al., 2017. Cis-eQTL-based trans-ethnic meta-analysis reveals novel genes associated with breast cancer risk. PLoS Genet. 13, e1006690.
    Hoh, B.P.,Rahman, T.A., 2022. The indigenous populations as the model by nature to understand human genomic-phenomics interactions. Quant. Biol. 10, 35-43.
    Hou, Y., Zhao, J., Martin, W., Kallianpur, A., Chung, M.K., Jehi, L., Sharifi, N., Erzurum, S., Eng, C., Cheng, F., 2020. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Medic. 18, 1-8.
    Huang, Q.Q., Tang, H.H., Teo, S.M., Mok, D., Ritchie, S.C., Nath, A.P., Brozynska, M., Salim, A., Bakshi, A., Holt, B.J., et al., 2020. Neonatal genetics of gene expression reveal potential origins of autoimmune and allergic disease risk. Nat. Commun. 11, 3761.
    Hughes, D.A., Kircher, M., He, Z., Guo, S., Fairbrother, G.L., Moreno, C.S., Khaitovich, P.,Stoneking, M., 2015. Evaluating intra- and inter-individual variation in the human placental transcriptome. Genome Biol. 16, 1-18.
    Hulur, I., Gamazon, E.R., Skol, A.D., Xicola, R.M., Llor, X., Onel, K., Ellis, N.A., Kupfer, S.S., 2015. Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci. BMC Genomics 16, 1-15.
    Ishigaki, K., Kochi, Y., Suzuki, A., Tsuchida, Y., Tsuchiya, H., Sumitomo, S., Yamaguchi, K., Nagafuchi, Y., Nakachi, S., Kato, R., et al., 2017. Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat. Genet. 49, 1120-1125.
    Jung, S., Liu, W., Baek, J., Moon, J.W., Ye, B.D., Lee, H.-S., Park, S.H., Yang, S.-K., Han, B., Liu, J., et al., 2020. Expression quantitative trait loci (eQTL) mapping in korean patients with crohn’s disease and identification of potential causal genes through integration with disease associations. Front. Genet. 11, 486.
    Kamberov, Y.G., Wang, S., Tan, J., Gerbault, P., Wark, A., Tan, L., Yang, Y., Li, S., Tang, K., Chen, H., et al., 2013. Modeling recent human evolution in mice by expression of a selected edar variant. Cell 152, 691-702.
    Kang, M., Gao, J., 2020. Integration of multi-omics data for expression quantitative trait loci (eQTL) analysis and eQTL epistasis. eQTL Analysis: Method. Protocol. 157-171.
    Keen, J.C.,Moore, H.M., 2015. The genotype-tissue expression (GTEx) project: Linking clinical data with molecular analysis to advance personalized medicine. J. Personal. Med. 5, 22-29.
    Kelly, D.E., Hansen, M.E., Tishkoff, S.A., 2017. Global variation in gene expression and the value of diverse sampling. Curr. Opin. Sys. Biol. 1, 102-108.
    Kerimov, N., Hayhurst, J. D., Peikova, K., Manning, J. R., Walter, P., Kolberg, L., Samovica, M., Sakthivel, M. P., Kuzmin, I., Trevanion, S. J., et al., 2021. A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat. Genet. 53, 1290-1299.
    Kim-Hellmuth, S., Aguet, F., Oliva, M., Munoz-Aguirre, M., Kasela, S., Wucher, V., Castel, S. E., Hamel, A. R., Vinuela, A., Roberts, A. L., et al., 2020. Cell type-specific genetic regulation of gene expression across human tissues. Science, 369, eaaz8528.
    Ko, B. S., Lee, S. B., Kim, T. K., 2024. A brief guide to analyzing expression quantitative trait loci. Mol. Cells 47, 100139.
    Kudaravalli, S., Veyrieras, J.-B., Stranger, B.E., Dermitzakis, E.T., Pritchard, J.K., 2009. Gene expression levels are a target of recent natural selection in the human genome. Mol. Biol. Evol. 26, 649-658.
    Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., et al., 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220.
    Le, M.K., Smith, O.S., Akbari, A., Harpak, A., Reich, D., Narasimhan, V.M., 2022. 1,000 ancient genomes uncover 10,000 years of natural selection in Europe. bioRxiv. 2022.08.24.505188.
    Lea, A.J., Garcia, A., Arevalo, J., Ayroles, J.F., Buetow, K., Cole, S.W., Eid Rodriguez, D., Gutierrez, M., Highland, H.M., Hooper, P.L., et al., 2023. Natural selection of immune and metabolic genes associated with health in two lowland Bolivian populations. Proc. Natl. Acad. Sci. U. S. A. 120, e2207544120.
    Li, J., Liu, Y., Kim, T., Min, R., Zhang, Z., 2010. Gene expression variability within and between human populations and implications toward disease susceptibility. PLoS Comp. Biol. 6, e1000910.
    Li, Y.I., van de Geijn, B., Raj, A., Knowles, D.A., Petti, A.A., Golan, D., Gilad, Y., Pritchard, J.K., 2016. RNA splicing is a primary link between genetic variation and disease. Science, 352, 600-604.
    Loh, M., Zhang, W., Ng, H.K., Schmid, K., Lamri, A., Tong, L., Ahmad, M., Lee, J.-J., Ng, M.C., Petty, L.E., et al., 2022. Identification of genetic effects underlying type 2 Diabetes in South Asian and European populations. Commun. Biol. 5, 329.
    Lona-Durazo, F., Mendes, M., Thakur, R., Funderburk, K., Zhang, T., Kovacs, M.A., Choi, J., Brown, K.M., Parra, E.J., 2021. A large canadian cohort provides insights into the genetic architecture of human hair colour. Commun. Biol. 4, 1253.
    Long, E., Zhang, J., 2023. Evidence for the role of selection for reproductively advantageous alleles in human aging. Sci. Adv. 9, eadh4990.
    Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., et al., 2013. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580-585.
    Lu, Z., Gopalan, S., Yuan, D., Conti, D. V., Pasaniuc, B., Gusev, A., Mancuso, N., 2022. Multi-ancestry fine-mapping improves precision to identify causal genes in transcriptome-wide association studies. Am. J. Hum. Genet. 109, 1388-1404.
    Maisano Delser, P., Ravnik-Glavac, M., Gasparini, P., Glavac, D., Mezzavilla, M., 2018. Genetic landscape of Slovenians: Past admixture and natural selection pattern. Front. Genet. 9, 551.
    Mandric, I., Schwarz, T., Majumdar, A., Hou, K., Briscoe, L., Perez, R., Subramaniam, M., Hafemeister, C., Satija, R., Ye, C.J., et al., 2020. Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. Nat. Commun. 11, 5504.
    Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al., 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-1195.
    McKenzie, M., Henders, A.K., Caracella, A., Wray, N.R., Powell, J.E., 2014. Overlap of expression quantitative trait loci (eQTL) in human brain and blood. BMC Med. Genomics 7, 1-11.
    Mizuno, A., Okada, Y. 2019. Biological characterization of expression quantitative trait loci (eQTL) showing tissue-specific opposite directional effects. Eur. J. Hum. Genet. 27, 1745-1756.
    Mogil, L.S., Andaleon, A., Badalamenti, A., Dickinson, S.P., Guo, X., Rotter, J.I., Johnson, W.C., Im, H.K., Liu, Y., Wheeler, H.E., 2018. Genetic architecture of gene expression traits across diverse populations. PLoS Genet. 14, e1007586.
    Mostafavi, H., Spence, J.P., Naqvi, S., Pritchard, J.K. 2023. Systematic differences in discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 1866-1875.
    Murphy, A., Chu, J.-H., Xu, M., Carey, V.J., Lazarus, R., Liu, A., Szefler, S.J., Strunk, R., DeMuth, K., Castro, M., et al., 2010. Mapping of numerous disease-associated expression polymorphisms in primary peripheral blood CD4+ lymphocytes. Hum. Mol. Genet. 19, 4745-4757.
    Natri, H.M., Del Azodi, C.B., Peter, L., Taylor, C.J., Chugh, S., Kendle, R., Chung, M.-i., Flaherty, D.K., Matlock, B.K., Calvi, C.L., et al., 2024. Cell-type-specific and disease-associated expression quantitative trait loci in the human lung. Nat. Genet. 56, 595-604.
    Narahara, M., Higasa, K., Nakamura, S., Tabara, Y., Kawaguchi, T., Ishii, M., Matsubara, K., Matsuda, F., Yamada, R. 2014. Large-scale East-Asian eQTL mapping reveals novel candidate genes for LD mapping and the genomic landscape of transcriptional effects of sequence variants. PLoS ONE 9, e100924.
    Neavin, D., Nguyen, Q., Daniszewski, M.S., Liang, H.H., Chiu, H.S., Wee, Y.K., Senabouth, A., Lukowski, S.W., Crombie, D.E., Lidgerwood, G.E., et al., 2021. Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. Genome Biol. 22, 1-19.
    Nedelec, Y., Sanz, J., Baharian, G., Szpiech, Z.A., Pacis, A., Dumaine, A., Grenier, J.-C., Freiman, A., Sams, A.J., Hebert, S., et al., 2016. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657-669.
    Nica, A.C., Dermitzakis, E.T. 2013. Expression quantitative trait loci: Present and future. Phil. Trans. R. Soc. B: Biol. Sci. 368, 20120362.
    Ning, Z., Tan, X., Yuan, Y., Huang, K., Pan, Y., Tian, L., Lu, Y., Wang, X., Qi, R., Lu, D., et al., 2023. Expression profiles of east-west highly differentiated genes in Uyghur genomes. Natl. Sci. Rev. 10, nwad077.
    Ota, M., Fujio, K., 2021. Multi-omics approach to precision medicine for immune-mediated diseases. Inflamm. Regen. 41, 23.
    Pai, A.A., Pritchard, J.K., Gilad, Y., 2015. The genetic and mechanistic basis for variation in gene regulation. PLoS Genet. 11, e1004857.
    Pan, Y., Liu, P., Wang, F., Wu, P., Cheng, F., Jin, X., Xu, S., 2022. Lineage-specific positive selection on ACE2 contributes to the genetic susceptibility of COVID-19. Natl. Sci. Rev. 9, nwac118.
    Pan, Y., Wen, J., Ning, Z., Yuan, Y., Liu, X., Yang, Y., Guan, Y., Lu, Y., Mamatyusupu, D., Xu, S., 2023. Comparative genomic and transcriptomic analyses reveal the impacts of genetic admixture in Kazaks, Uyghurs, and Huis. Mol. Biol. Evol. 40, msad054.
    Park, L., 2016. Evidence of recent intricate adaptation in human populations. PLoS ONE 11, e0165870.
    Park, Y.H., Hodges, A., Simmons, A., Lovestone, S., Weiner, M.W., Kim, S., Saykin, A.J., Nho, K., Alzheimer's Disease Neuroimaging Initiative., 2020. Association of blood-based transcriptional risk scores with biomarkers for Alzheimer disease. Neurol. Genet. 6, e517.
    Petretto, E., Mangion, J., Dickens, N.J., Cook, S.A., Kumaran, M.K., Lu, H., Fischer, J., Maatz, H., Kren, V., Pravenec, M., et al., 2006. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2, e172.
    Pierce, B.L., Tong, L., Chen, L.S., Rahaman, R., Argos, M., Jasmine, F., Roy, S., Paul-Brutus, R., Westra, H.-J., Franke, L., et al., 2014. Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: A genome-wide analysis among 1,800 South Asians. PLoS Genet. 10, e1004818.
    Pierron, D., Heiske, M., Razafindrazaka, H., Pereda-Loth, V., Sanchez, J., Alva, O., Arachiche, A., Boland, A., Olaso, R., Deleuze, J.-F., et al., 2018. Strong selection during the last millennium for African ancestry in the admixed population of Madagascar. Nat. Commun. 9, 1-9.
    Powell, J.E., Henders, A.K., McRae, A.F., Wright, M.J., Martin, N.G., Dermitzakis, E.T., Montgomery, G.W., Visscher, P.M., 2012. Genetic control of gene expression in whole blood and lymphoblastoid cell lines is largely independent. Genome Res. 22, 456-466.
    Price, A.L., Patterson, N., Hancks, D.C., Myers, S., Reich, D., Cheung, V.G., Spielman, R.S., 2008. Effects of cis and trans genetic ancestry on gene expression in African Americans. PLoS Genet. 4, e1000294.
    Proudfoot, N.J., Furger, A., Dye, M.J., 2002. Integrating mRNA processing with transcription. Cell 108, 501-512.
    Quach, H., Rotival, M., Pothlichet, J., Loh, Y.-H.E., Dannemann, M., Zidane, N., Laval, G., Patin, E., Harmant, C., Lopez, M., et al., 2016. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell 167, 643-656.
    Quiver, M.H., Lachance, J., 2022. Adaptive eQTLs reveal the evolutionary impacts of pleiotropy and tissue-specificity while contributing to health and disease. Hum. Genet. Genom. Adv. 3, 100083.
    Reddy, J. S., Badillo, V. M. C., Jin, J., Lincoln, S. J., Ho, C. C., Crook, J. E., et al., 2023. Targeted plasma eQTL and pQTL to identify potential novel biomarkers for Alzheimer’s Disease in African Americans. Alzheim. Dement., 19, e080321.
    Sasayama, D., Hori, H., Nakamura, S., Miyata, R., Teraishi, T., Hattori, K., Ota, M., Yamamoto, N., Higuchi, T., Amano, N., 2013. Identification of single nucleotide polymorphisms regulating peripheral blood mRNA expression with genome-wide significance: An eQTL study in the Japanese population. PLoS ONE 8, e54967.
    Schork, N.J., 2015. Personalized medicine: Time for one-person trials. Nature 520, 609-611.
    Shaffer, J.R., Orlova, E., Lee, M.K., Leslie, E.J., Raffensperger, Z.D., Heike, C.L., Cunningham, M.L., Hecht, J.T., Kau, C.H., Nidey, N.L., et al., 2016. Genome-wide association study reveals multiple loci influencing normal human facial morphology. PLoS Genet. 12, e1006149.
    Shang, L., Smith, J.A., Zhao, W., Kho, M., Turner, S.T., Mosley, T.H., Kardia, S.L., Zhou, X., 2020. Genetic architecture of gene expression in European and African Americans: An eQTL mapping study in GENOA. Am. J. Hum. Genet. 106, 496-512.
    Smemo, S., Tena, J.J., Kim, K.-H., Gamazon, E.R., Sakabe, N.J., Gomez-Marin, C., Aneas, I., Credidio, F.L., Sobreira, D.R., Wasserman, N.F., et al., 2014. Obesity-associated variants within fto form long-range functional connections with IRX3. Nature 507, 371-375.
    Sonawane, A.R., Platig, J., Fagny, M., Chen, C.-Y., Paulson, J.N., Lopes-Ramos, C.M., DeMeo, D.L., Quackenbush, J., Glass, K.,Kuijjer, M.L., 2017. Understanding tissue-specific gene regulation. Cell Rep. 21, 1077-1088.
    Spielman, R.S., Bastone, L.A., Burdick, J.T., Morley, M., Ewens, W.J., Cheung, V.G., 2007. Common genetic variants account for differences in gene expression among ethnic groups. Nat. Genet. 39, 226-231.
    Storey, J.D., Madeoy, J., Strout, J.L., Wurfel, M., Ronald, J., Akey, J.M. 2007. Gene-expression variation within and among human populations. Am. J. Hum. Genet. 80, 502-509.
    Strafella, C., Caputo, V., Termine, A., Barati, S., Gambardella, S., Borgiani, P., Caltagirone, C., Novelli, G., Giardina, E., Cascella, R., 2020. Analysis of ACE2 genetic variability among populations highlights a possible link with COVID-19-related neurological complications. Genes 11, 741.
    Stranger, B.E., Dermitzakis, E.T. 2006. From DNA to RNA to disease and back: The 'central dogma' of regulatory disease variation. Hum. Genomics 2, 383-390.
    Stranger, B.E., Forrest, M.S., Clark, A.G., Minichiello, M.J., Deutsch, S., Lyle, R., Hunt, S., Kahl, B., Antonarakis, S.E., Tavare, S., et al., 2005. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78.
    Stranger, B.E., Montgomery, S.B., Dimas, A.S., Parts, L., Stegle, O., Ingle, C.E., Sekowska, M., Smith, G.D., Evans, D., Gutierrez-Arcelus, M., et al., 2012. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639.
    Stranger, B.E., Nica, A.C., Forrest, M.S., Dimas, A., Bird, C.P., Beazley, C., Ingle, C.E., Dunning, M., Flicek, P., Koller, D., et al., 2007. Population genomics of human gene expression. Nat. Genet. 39, 1217-1224.
    Sun, X., Chen, B., Qi, Y., Wei, M., Chen, W., Wu, X., Wang, Q., Li, J., Lei, X., Luo, G., 2024. Multi-omics mendelian randomization integrating GWAS, eQTL and pQTL data revealed GSTM4 as a potential drug target for migraine. J. Headach Pain. 25, 117.
    Thabet, K., Asimakopoulos, A., Shojaei, M., Romero-Gomez, M., Mangia, A., Irving, W. L., et al., 2016. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C. Nat. Commun. 7, 12757.
    Ulrich, A., Otero-Nunez, P., Wharton, J., Swietlik, E.M., Graf, S., Morrell, N.W., Wang, D., Lawrie, A., Wilkins, M.R., Prokopenko, I., et al., 2020. Expression quantitative trait locus mapping in pulmonary arterial hypertension. Genes 11, 1247.
    Umans, B.D., Battle, A., Gilad, Y., 2021. Where are the disease-associated eQTLs? Trends. Genet. 37, 109-124.
    Van Der Wijst, M.G., Brugge, H., De Vries, D.H., Deelen, P., Swertz, M.A., Study, L.C., Consortium, B., Franke, L., 2018. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493-497.
    Vosa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Yazar, S., et al., 2021. Large-scale cis-and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300-1310.
    Westra, H.-J., Franke, L., 2014. From genome to function by studying eQTLs. Biochim. Biophys. Acta 1842, 1896-1902.
    Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterlander, M., Hollfelder, N., Potekhina, I.D., Schier, W., Thomas, M.G., et al., 2014. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc Natl. Acad. Sci. U. S. A. 111, 4832-4837.
    Williams, G. C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398-411.
    Wooding, S.P., Ramirez, V.A., Behrens, M. 2021. Bitter taste receptors: Genes, evolution and health. Evol. Med. Publ. Health. 9, 431-447.
    Xiao, Q., Mears, J., Nathan, A., Ishigaki, K., Baglaenko, Y., Lim, N., Cooney, L. A., Harris, K. M., Anderson, M. S., Fox, D. A., et al., 2023. Immunosuppression causes dynamic changes in expression QTLs in psoriatic skin. Nat. Commun. 14, 6268.
    Yao, C., Joehanes, R., Johnson, A. D., Huan, T., Esko, T., Ying, S., Freedman, J. E., Murabito, J., Lunetta, K. L., Metspalu, A., et al., 2014. Sex-and age-interacting eQTLs in human complex diseases. Hum. Mol. Genet. 23, 1947-1956.
    Yazar, S., Alquicira-Hernandez, J., Wing, K., Senabouth, A., Gordon, M.G., Andersen, S., Lu, Q., Rowson, A., Taylor, T.R., Clarke, L., et al., 2022. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science 376, eabf3041.
    Ye, K., Lu, J., Raj, S. M., Gu, Z., 2013. Human expression QTLs are enriched in signals of environmental adaptation. Genome Biol. Evol. 5, 1689-1701.
    Ye, Y., Zhang, Z., Liu, Y., Diao, L., Han, L. 2020. A multi-omics perspective of quantitative trait loci in precision medicine. Trends. Genet. 36, 318-336.
    Yin, L., Coelho, S.G., Ebsen, D., Smuda, C., Mahns, A., Miller, S.A., Beer, J.Z., Kolbe, L., Hearing, V.J., 2014. Epidermal gene expression and ethnic pigmentation variations among individuals of Asian, European and African ancestry. Exp. Dermatol. 23, 731-735.
    Zeng, B., Bendl, J., Kosoy, R., Fullard, J.F., Hoffman, G.E., Roussos, P. 2022. Multi-ancestry eqtl meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat. Genet. 54, 161-169.
    Zhang, J., Zhao, H., 2023. eQTL studies: From bulk tissues to single cells. J. Genet. Genom. 50, 925-933.
    Zhang, W., Duan, S., Kistner, E.O., Bleibel, W.K., Huang, R.S., Clark, T.A., Chen, T.X., Schweitzer, A.C., Blume, J.E., Cox, N.J., et al., 2008. Evaluation of genetic variation contributing to differences in gene expression between populations. Am. J. Hum. Genet. 82, 631-640.
    Zhang, Z., Fang, T., Chen, L., Ji, F., Chen, J., 2024. Multi-omics mendelian randomization integrating GWAS, eQTL, and mQTL data identified genes associated with breast cancer. Am. J. Cancer. Res. 14, 1433.
    Zhong, H., Beaulaurier, J., Lum, P. Y., Molony, C., Yang, X., Macneil, D. J., Weingarth, D. T., Zhang, B., Greenawalt, D., Dobrin, R., et al., 2010. Liver and adipose expression associated SNPs are enriched for association to type 2 diabetes. PLoS Genet. 6, e1000932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return