9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

A gain-of-function variant in RICTOR predisposes to human obesity

doi: 10.1016/j.jgg.2025.02.002
Funds:

We thank all participants for their involvement in this study, and Prof. Chi-Chuang Hui from Toronto University for his constructive suggestions. This work was supported by grants from National Key Research and Development Program of China (2022YFC2505201), National Natural Science Foundation of China (92157204, 91957124, and 82250901), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161306, 20171903 Round 2), Innovative Research Team of High-level Local University in Shanghai, and Program of Shanghai Academic Research Leader (20XD1403200, 23XD1422400).

  • Received Date: 2024-10-25
  • Accepted Date: 2025-02-09
  • Rev Recd Date: 2025-02-09
  • Available Online: 2025-07-11
  • Publish Date: 2025-02-19
  • mTORC1/2 play central roles as signaling hubs of cell growth and metabolism and are therapeutic targets for several diseases. However, the human genetic evidence linking mutations of mTORC1/2 to obesity remains elusive. Using whole-exome sequencing of 1944 cases with severe obesity and 2161 healthy lean controls, we identify a rare RICTOR p.I116V variant enriched in 9 unrelated cases. In Rictor null mouse embryonic fibroblasts, overexpression of the RICTOR p.I116V mutant increases phosphorylation of AKT, a canonical mTORC2 substrate, compared with wild-type RICTOR, indicating a gain-of-function change. Consistent with the human obesity phenotype, the knock-in mice carrying homogenous Rictor p.I116V variants gain more body weight under a high-fat diet. Additionally, the stromal vascular fraction cells derived from inguinal white adipose tissue of knock-in mice display an enhanced capacity for adipocyte differentiation via AKT activity. These findings demonstrate that the rare gain-of-function RICTOR p.I116V mutation activates AKT signaling, promotes adipogenesis, and contributes to obesity in humans.
  • loading
  • Akbari, P., Gilani, A., Sosina, O., Kosmicki, J.A., Khrimian, L., Fang, Y.Y., Persaud, T., Garcia, V., Sun, D., Li, A., et al., 2021. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683.
    Battaglioni, S., Benjamin, D., Walchli, M., Maier, T., Hall, M.N., 2022. mTOR substrate phosphorylation in growth control. Cell 185, 1814-1836.
    Bouchard, C., 2021. Genetics of obesity: what we have learned over decades of research. Obesity 29, 802-820.
    Bourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K., Gimble, J.M., 2013. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy 15, 641-648.
    Cao, Y., Li, L., Xu, M., Feng, Z., Sun, X., Lu, J., Xu, Y., Du, P., Wang, T., Hu, R., et al., 2020. The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res. 30, 717-731.
    Dos, D.S., Ali, S.M., Kim, D.-H., Guertin, D.A., Latek, R.R., Erdjument-Bromage, H., Tempst, P., Sabatini, D.M., 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296-1302.
    Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S., Lango, H., Rayner, N.W., et al., 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889-894.
    Frias, M.A., Thoreen, C.C., Jaffe, J.D., Schroder, W., Sculley, T., Carr, S.A., Sabatini, D.M., 2006. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16, 1865-1870.
    Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapani, F., Terracciano, L., Heim, M.H., Ruegg, M.A., Hall, M.N., 2012. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725-738.
    Hara, K., Maruki, Y., Long, X., Yoshino, K.-i., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., Yonezawa, K., 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189.
    Hsiao, W.Y., Jung, S.M., Tang, Y., Haley, J.A., Li, R., Li, H., Calejman, C.M., Sanchez-Gurmaches, J., Hung, C.M., Luciano, A.K., et al., 2020. The lipid handling capacity of subcutaneous fat is programmed by mTORC2 during development. Cell Rep. 33, 108223.
    Hung, C.M., Calejman, C.M., Sanchez-Gurmaches, J., Li, H., Clish, C.B., Hettmer, S., Wagers, A.J., Guertin, D.A., 2014. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 8, 256-271.
    Jackson, R.S., Creemers, J.W., Ohagi, S., Raffin-Sanson, M.L., Sanders, L., Montague, C.T., Hutton, J.C., O'Rahilly, S., 1997. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16, 303-306.
    Kajno, E., McGraw, T.E., Gonzalez, E., 2015. Development of a new model system to dissect isoform specific Akt signalling in adipocytes. Biochem. J. 468, 425-434.
    Khera, A.V., Chaffin, M., Wade, K.H., Zahid, S., Brancale, J., Xia, R., Distefano, M., Senol-Cosar, O., Haas, M.E., Bick, A., et al., 2019. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177, 587-596.
    Kim, D.-H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R., Erdjument-Bromage, H., Tempst, P., Sabatini, D.M.J.C., 2002. mTOR interacts with Raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175.
    Krude, H., Biebermann, H., Luck, W., Horn, R., Brabant, G., Gruters, A., 1998. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155-157.
    Kumar, A., Lawrence, J.C., Jr., Jung, D.Y., Ko, H.J., Keller, S.R., Kim, J.K., Magnuson, M.A., Harris, T.E., 2010. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59, 1397-1406.
    Lamming, D.W., Ye, L., Katajisto, P., Goncalves, M.D., Saitoh, M., Stevens, D.M., Davis, J.G., Salmon, A.B., Richardson, A., Ahima, R.S., et al., 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638-1643.
    Liu, G.Y., Sabatini, D.M., 2020. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183-203.
    Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang, J., et al., 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197-206.
    Long, A., Wang, Y., Guo, Y., Hong, J., Ning, G., Meng, Z., Wang, J., Wang, Y., 2024. A famsin-glucagon axis mediates glucose homeostasis. Cell Metab. S1550-4131(24)00454-00456.
    Loos, R.J., Lindgren, C.M., Li, S., Wheeler, E., Zhao, J.H., Prokopenko, I., Inouye, M., Freathy, R.M., Attwood, A.P., Beckmann, J.S., et al., 2008. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768-775.
    Lotta, L.A., Mokrosinski, J., Mendes de Oliveira, E., Li, C., Sharp, S.J., Luan, J., Brouwers, B., Ayinampudi, V., Bowker, N., Kerrison, N., et al., 2019. Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell 177, 597-607.
    Martinez Calejman, C., Trefely, S., Entwisle, S.W., Luciano, A., Jung, S.M., Hsiao, W., Torres, A., Hung, C.M., Li, H., Snyder, N.W., et al., 2020. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat. Commun. 11, 575.
    Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Sewter, C.P., Digby, J.E., Mohammed, S.N., Hurst, J.A., et al., 1997. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903-908.
    O'Rahilly, S., Gray, H., Humphreys, P.J., Krook, A., Polonsky, K.S., White, A., Gibson, S., Taylor, K., Carr, C., 1995. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N. Engl. J. Med. 333, 1386-1390.
    Saxton, R.A., Sabatini, D.M., 2017. mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976.
    Scaiola, A., Mangia, F., Imseng, S., Boehringer, D., Berneiser, K., Shimobayashi, M., Stuttfeld, E., Hall, M.N., Ban, N., Maier, T., 2020. The 3.2-A resolution structure of human mTORC2. Sci. Adv. 6, eabc1251.
    Shi, X., Hu, X., Fang, X., Jia, L., Wei, F., Peng, Y., Liu, M., Gao, A., Zhao, K., Chen, F., et al., 2025. A feeding-induced myokine modulates glucose homeostasis. Nat. Metab. 7, 68-83.
    Sun, Y., Zhang, J., Hong, J., Zhang, Z., Lu, P., Gao, A., Ni, M., Zhang, Z., Yang, H., Shen, J., et al., 2023. Human RSPO1 mutation represses beige adipocyte thermogenesis and contributes to diet-induced adiposity. Adv. Sci. (Weinh), 10, e2207152.
    Tang, Y., Wallace, M., Sanchez-Gurmaches, J., Hsiao, W.Y., Li, H., Lee, P.L., Vernia, S., Metallo, C.M., Guertin, D.A., 2016. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat. Commun. 7, 11365.
    Vaisse, C., Clement, K., Guy-Grand, B., Froguel, P., 1998. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113-114.
    van der Klaauw, A.A., Croizier, S., Mendes de Oliveira, E., Stadler, L.K.J., Park, S., Kong, Y., Banton, M.C., Tandon, P., Hendricks, A.E., Keogh, J.M., et al., 2019. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell 176, 729-742.
    Wang, J., Liu, R., Wang, F., Hong, J., Li, X., Chen, M., Ke, Y., Zhang, X., Ma, Q., Wang, R., et al., 2013. Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch. Nat. Cell Biol. 15, 1455-1463.
    Wang, T., Lu, J., Shi, L., Chen, G., Xu, M., Xu, Y., Su, Q., Mu, Y., Chen, L., Hu, R., et al., 2020. Association of insulin resistance and beta-cell dysfunction with incident diabetes among adults in China: a nationwide, population-based, prospective cohort study. Lancet Diabetes Endocrinol. 8, 115-124.
    Yengo, L., Sidorenko, J., Kemper, K.E., Zheng, Z., Wood, A.R., Weedon, M.N., Frayling, T.M., Hirschhorn, J., Yang, J., Visscher, P.M., et al., 2018. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641-3649.
    Yeo, G.S., Farooqi, I.S., Aminian, S., Halsall, D.J., Stanhope, R.G., O'Rahilly, S., 1998. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111-112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return