Assefa, Y., Carter, P., Hinds, M., Bhalla, G., Schon, R., Jeschke, M., Paszkiewicz, S., Smith, S., Ciampitti, I.A., 2018. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci. Rep. 8, 4937.
|
Becraft, P.W., Freeling, M., 1991. Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. Plant Cell 3, 801-807.
|
Becraft, P.W., Bongard-Pierce, D.K., Sylvester, A.W., Poethig, R.S., Freeling, M., 1990. The liguleless-1 gene acts tissue specifically in maize leaf development. Dev. Biol. 141, 220-232.
|
Best, N.B., Hartwig, T., Budka, J., Fujioka, S., Johal, G., Schulz, B., Dilkes, B.P., 2016. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. 171, 2633-2647.
|
Bortiri, E., Chuck, G., Vollbrecht, E., Rocheford, T., Martienssen, R., Hake, S., 2006. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18, 574-585.
|
Cao, Y., Zhong, Z., Wang, H., Shen, R., 2022. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol. J. 20, 426-436.
|
Dong, L., Shi, Y., Li, P., Zhong, S., Sun, Y., Yang, F., 2023. Constructing the maize inflorescence regulatory network by using efficient tsCUT&Tag assay. Crop J. 11, 951-956.
|
Duncan, W.G., 1971. Leaf Angles, Leaf Area, and Canopy Photosynthesis. Crop Sci. 11, 482-485.
|
Duvick, D. N., 2005. Genetic progress in yield of United States maize (Zea mays L.). Maydica (Italy).
|
Duvick, Donald N., 2005. The contribution of breeding to yield advances in maize (Zea mays L.), in: Advances in Agronomy. Elsevier, pp. 83-145.
|
Duvick, D.N., Smith, J.S.C., Cooper, M., 2003. Long-Term selection in a commercial hybrid maize breeding program, in: Plant Breeding Reviews. pp. 109-151.
|
Emerson, R.A., 1912. The inheritance of the ligule and auricles of corn leaves. Nebr. Agric. Exp. Stn. Annu. Rep. 25, 81-88.
|
Gallavotti, A., Yang, Y., Schmidt, R.J., Jackson, D., 2008. The relationship between auxin transport and maize branching. Plant Physiol. 147, 1913-1923.
|
Galli, M., Khakhar, A., Lu, Z., Chen, Z., Sen, S., Joshi, T., Nemhauser, J.L., Schmitz, R.J., Gallavotti, A., 2018. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat. Commun. 9, 4526.
|
Huang, G., Hu, H., van de Meene, A., Zhang, J., Dong, L., Zheng, S., Zhang, F., Betts, N.S., Liang, W., Bennett, M.J., et al., 2021. AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints. Plant Cell 33, 3120-3133.
|
Jackson, D., 1992. In situ hybridization in plants, in: Gurr, S.J., Mcpherson, M.J., Bowles, D.J. (Eds.), Molecular Plant Pathology. Oxford University Press, pp. 163-174.
|
Jafari, F., Wang, B., Wang, H., Zou, J., 2024. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. J. Integr. Plant Biol. 66, 849-864.
|
Johnston, R., Wang, M., Sun, Q., Sylvester, A.W., Hake, S., Scanlon, M.J., 2015. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. Plant Cell 26, 4718-4732.
|
Kong, D., Pan, X., Jing, Y., Zhao, Y., Duan, Y., Yang, J., Wang, B., Liu, Y., Shen, R., Cao, Y., et al., 2021. ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf. New Phytol. 230, 1533–1549.
|
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357-359.
|
Lewis, M.W., Bolduc, N., Hake, K., Htike, Y., Hay, A., Candela, H., Hake, S., 2014. Gene regulatory interactions at lateral organ boundaries in maize. Development 141, 4590-4597.
|
Li, X., Wu, P., Lu, Y., Guo, S., Zhong, Z., Shen, R., Xie, Q., 2020. Synergistic interaction of phytohormones in determining leaf angle in crops. Int. J. Mol. Sci. 21, 5052.
|
Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., Wang, H., 2007. Transposase-derived transcription factors regulate light signaling in arabidopsis. Science 318, 1302-1305.
|
Liu, K., Cao, J., Yu, K., Liu, X., Gao, Y., Chen, Q., Zhang, W., Peng, H., Du, J., Xin, M., et al., 2019. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol. 181, 179-194.
|
Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
|
Luo, X., Zheng, J., Huang, R., Huang, Y., Wang, H., Jiang, L., Fang, X., 2016. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep. 35, 2423-2433.
|
Mi, G., Chen, F., Wu, Q., Lai, N., Yuan, L., Zhang, F., 2010. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China Life Sci. 53, 1369-1373.
|
Moon, J., Candela, H., Hake, S., 2013. The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development 140, 405-412.
|
Moreno, M.A., Harper, L.C., Krueger, R.W., Dellaporta, S.L., Freeling, M., 1997. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 11, 616-628.
|
O’Malley, R.C., Huang, S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., Ecker, J.R., 2016. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell 165, 1280-1292.
|
Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A., 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8, e66428.
|
Sharman, B.C., 1942. Developmental Anatomy of the Shoot of Zea mays L. Ann. Bot. 6, 245-282.
|
Shi, Q., Xia, Y., Wang, Q., Lv, K., Yang, H., Cui, L., Sun, Y., Wang, X., Tao, Q., Song, X., et al., 2024. Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize. Mol. Plant 17, 1255-1271.
|
Strable, J., Wallace, J.G., Unger-Wallace, E., Briggs, S., Bradbury, P.J., Buckler, E.S., Vollbrecht, E., 2017. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell 29, 1622-1641.
|
Sylvester, A.W., Cande, W.Z., Freeling, M., 1990. Division and differentiation during normal and liguleless-1 maize leaf development. Development 110, 985-1000.
|
Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027.
|
Tian, F., Bradbury, P.J., Brown, P.J., Hung, H., Sun, Q., Flint-Garcia, S., Rocheford, T.R., McMullen, M.D., Holland, J.B., Buckler, E.S., 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 43, 159-162.
|
Tian, J., Wang, C., Xia, J., Wu, L., Xu, G., Wu, W., Li, D., Qin, W., Han, X., Chen, Q., et al., 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658-664.
|
Tian, J., Wang, C., Chen, F., Qin, W., Yang, H., Zhao, S., Xia, J., Du, X., Zhu, Y., Wu, L., et al., 2024. Maize smart-canopy architecture enhances yield at high densities. Nature 632, 576-584.
|
Tsiantis, M., Brown, M.I.N., Skibinski, G., Langdale, J.A., 1999. Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol 121, 1163-1168.
|
Tu, X., Mejía-Guerra, M.K., Valdes Franco, J.A., Tzeng, D., Chu, P.Y., Shen, W., Wei, Y., Dai, X., Li, P., et al., 2020. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat. Commun. 11, 5089.
|
United Nations 2024. World Population Prospects 2024: Summary of Results. United Nations Department of Economic and Social Affairs, Population Division.
|
van Dijk, M., Morley, T., Rau, M.L., Saghai, Y., 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat. Food 2, 494-501.
|
Walsh, J., Waters, C.A., Freeling, M., 1998. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev. 12, 208-218.
|
Wang, B., Lin, Z., Li, X., Zhao, Y., Zhao, B., Wu, G., Ma, X., Wang, H., Xie, Y., Li, Q., et al., 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565-571.
|
Wang, R., Liu, C., Chen, Z., Sun, S., Wang, X., 2021. Oryza sativa LIGULELESS 2s determine lamina joint positioning and differentiation by inhibiting auxin signaling. New Phytol. 229, 1832-1839.
|
Wu, G., Zhao, Y., Shen, R., Wang, B., Xie, Y., Ma, X., Zheng, Z., Wang, H., 2019. Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiol. 181, 789–803.
|
Xu, J., Wang, J., Xue, H., Zhang, G., 2021. Leaf direction: Lamina joint development and environmental responses. Plant Cell Environ. 44, 2441-2454.
|
Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., Matsuoka, M., 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591-1605.
|
Yuan, H., Xu, Z., Chen, W., Deng, C., Liu, Y., Yuan, M., Gao, P., Shi, H., Tu, B., Li, T., et al., 2022. OsBSK2, a putative brassinosteroid-signalling kinase, positively controls grain size in rice. J. Exp. Bot. 73, 5529-5542.
|
Zhao, S.Q., Xiang, J.J., Xue, H.W., 2013. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol. Plant 6, 174-187.
|
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al., 2008. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137.
|
Zhao, M., Tang, S., Zhang, H., He, M., Liu, J., Zhi, H., Sui, Y., Liu, X., Jia, G., Zhao, Z., et al., 2020. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc. Natl. Acad. Sci. U.S.A. 117, 21766-21774.
|
Zhao, Y., Zhang, C., Liu, W., Gao, W., Liu, C., Song, G., Li, W.X., Mao, L., Chen, B., Xu, Y., et al., 2016. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci. Rep. 6, 23890.
|
Zhong, J., van Esse, G.W., Bi, X., Lan, T., Walla, A., Sang, Q., Franzen, R., von Korff, M., 2021. INTERMEDIUM-M encodes an HvAP2L-H5 ortholog and is required for inflorescence indeterminacy and spikelet determinacy in barley. Proc. Natl. Acad. Sci. U.S.A. 118, e2011779118.
|