9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 3
Mar.  2025
Turn off MathJax
Article Contents

Mycorrhizal fungi enhance plant resistance to environmental stresses: from mechanisms to applications

doi: 10.1016/j.jgg.2025.01.013
Funds:

D Program of China (2022YFF1001800), the National Natural Science Foundation of China (32088102), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0630103). We thank Prof. Jincai Shi (Nanjing Agricultural University) for critical reading of the paper.

This work was supported by the National Key R&

  • Received Date: 2025-01-21
  • Accepted Date: 2025-01-23
  • Available Online: 2025-07-11
  • Publish Date: 2025-03-12
  • loading
  • Abdel-Fattah, G.M., Asrar, A.A., 2012. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol. Plant. 34, 267-277.
    Abdelmalik, A.M., Alsharani, T.S., Al-Qarawi, A.A., Ahmed, A.I., Aref, I.M., 2020. Response of growth and drought tolerance of Acacia seyal Del. seedlings to arbuscular mycorrhizal fungi. Plant Soil Environ. 66, 264-271.
    Chen, J., Zhang, H., Zhang, X., Tang, M., 2017. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ Homeostasis. Front. Plant Sci. 8, 1739.
    Cordier, C., Pozo, M.J., Barea, J.M., Gianinazzi, S., Gianinazzi-Pearson, V., 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Interact. 11, 1017-1028.
    Elhindi, K.M., El-Din, A.S., Elgorban, A.M., 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 24, 170-179.
    Estrada-Luna, A.A., Davies, F.T., 2003. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscissic acid and growth of micropropagated Chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J. Plant Physiol. 160, 1073-1083.
    Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., et al., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175.
    Li, Z., Wu, N., Meng, S., Wu, F., Liu, T., 2020. Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS One 15, e0231497.
    Liu, J., Yang, B., Chen, X., Zhang, T., Zhang, H., Du, Y., Zhao, Q., Zhang, Z., Cai, D., Liu, J., et al., 2024. ZmL75 is required for colonization by arbuscular mycorrhizal fungi and for saline-alkali tolerance in maize. J. Genet. Genomics S1673-8527, 00368-0.
    Liu, N., Chen, X., Song, F., Liu, F., Liu, S., Zhu, X., 2016. Effects of arbuscular mycorrhiza on growth and nutrition of maize plants under low temperature stress. Philippine Agric. Sci. 99, 246-252.
    Parihar, M., Rakshit, A., Rana, K., Tiwari, G., Jatav, S.S., 2020. The effect of arbuscular mycorrhizal fungi inoculation in mitigating salt stress of pea (Pisum sativum L.). Commun. Soil Sci. Plant Anal. 51, 1545-1559.
    Porcel, R., Aroca, R., Azcon, R., Ruiz-Lozano, J.M., 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26, 673-684.
    Sayin, F., Khalvati, M., Erdincler, A., 2019. Effects of sewage sludge application and arbuscular mycorrhizal fungi (G. mosseae and G. intraradices) interactions on the heavy metal phytoremediation in chrome mine tailings. Front. Plant Sci. 112, 217-224.
    Sheng, M., Tang, M., Zhang, F., Huang, Y., 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21, 423-430.
    Shi, J., Wang, X., Wang E., 2023. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annu. Rev. Plant Biol. 74, 569-607.
    Shi-Chu, L., Yong, J., Ma-Bo, L., Wen-Xu, Z., Nan, X., Hui-hui, Z., 2019. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. J. Plant Interact. 14, 482-491.
    Talaat, N.B., Shawky, B.T., 2011. Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J. Plant Nutr. Soil Sci. 174, 283-291.
    Wang, E., Schornack, S., Marsh, J.F., Gobbato, E., Schwessinger, B., Eastmond, P., Schultze, M., Kamoun, S., Oldroyd, G.E.D., 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22, 2242-2246.
    Xiong, L., Zhu, J.K., 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25, 131-139.
    Plaxton, W.C., Tran, H.T., 2011. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 156, 1006-1015.
    Poirier, Y., Thoma, S., Somerville, C., Schiefelbein, J., 1991. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 97, 1087-1093.
    Puga, M.I., Mateos, I., Charukesi, R., Wang, Z., Franco-Zorrilla, J.M., de Lorenzo, L., Irigoyen, M.L., Masiero, S., Bustos, R., Rodriguez, J. et al., 2014. SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A 111, 14947-14952.
    Raghothama, K.G., 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665-693.
    Razaq, M., Zhang, P., Shen, H.L., Salahuddin, 2017. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One 12, e0171321.
    Reed, H., 1946. Effects of zinc deficiency on phosphate metabolism of the tomato plant. Am. J. Bot. 33, 778-784.
    Reis, R., Deforges, J., Sokoloff, T., Poirier, Y., 2020. Modulation of shoot phosphate level and growth by PHOSPHATE1 upstream open reading frame. Plant Physiol. 183, 1145-1156.
    Ried, M.K., Wild, R., Zhu, J.S., Pipercevic, J., Sturm, K., Broger, L., Harmel, R.K., Abriata, L.A., Hothorn, L.A., Fiedler, D., et al., 2021. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat. Commun. 12, 384.
    Robinson, W.D., Park, J., Tran, H.T., Del Vecchio, H.A., Ying, S., Zins, J.L., Patel, K., McKnight, T.D., Plaxton, W.C., 2012. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J. Exp. Bot. 63, 6531-6542.
    Ruan, W., Guo, M., Wang, X., Guo, Z., Xu, Z., Xu, L., Zhao, H., Sun, H., Yan, C., Yi, K.,2019. Two ring-finger ubiquitin E3 ligases regulate the degradation of SPX4, an Internal Phosphate Sensor, for phosphate homeostasis and signaling in rice. Mol. Plant. 12, 1060-1074.
    Rufty, T.W., Mackown, C.T., Israel, D.W., 1990. Phosphorus stress effects on assimilation of nitrate. Plant Physiol. 94, 328-333.
    Rufty, T.W.Jr, Israel, D.W., Volk, R.J., Qiu, J., Sa, T., 1993. Phosphate regulation of nitrate assimilation in soybean. J. Exp. Bot. 44, 879-891.
    Rufty, T.W.Jr, Siddiqi, M.Y., Glass, A.D.M., Ruth, T.J., 1991. Altered 13NO3- influx in phosphorus limited plants. Plant Sci. 76, 43-48.
    Salazar-Vidal, M.N., Acosta-Segovia, E., Sanchez-Leon, N., Ahern, K.R., Brutnell, T.P., Sawers, R.J., 2016. Characterization and transposon mutagenesis of the maize (Zea mays) Pho1 gene family. PLoS One 11, e0161882.
    Schachtman, D.P., Reid, R.J., Ayling, S.M., 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447-453.
    Schluter, U., Colmsee, C., Scholz, U., Brautigam, A., Weber, A.P., Zellerhoff, N., Bucher, M., Fahnenstich, H., Sonnewald, U., 2013. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genom., 14, 442.
    Sentenac, H., Grignon, C., 1985. Effect of pH on orthophosphate uptake by corn roots. Plant Physiol. 77, 136-141.
    Shi, J., Zhao, B., Zheng, S., Zhang, X., Wang, X., Dong, W., Xie, Q., Wang, G., Xiao, Y., Chen, F., et al., 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, 5527-5540.
    Shin, H., Shin, H.S., Dewbre, G.R., Harrison, M.J., 2004. Phosphate transport in Arabidopsis: pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 39, 629-642.
    Smith, S.E., Smith, F.A., Jakobsen, I., 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133, 16-20.
    Su, T., Xu, Q., Zhang, F.C., Chen, Y., Li, L.Q., Wu, W.H., Chen, Y.F., 2015. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Physiol., 167, 1579-1591.
    Sun, B.R., Gao, Y.Z., Lynch, J.P., 2018. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol. 177, 90-104.
    Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L., Desnos, T., 2007. Root tip contact with low-phosphate media reprograms plant root architecture. Nat. Genet. 39, 792-796.
    Tang, H., Niu, L., Wei, J., Chen, X., Chen, Y., 2019. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Front. Plant Sci. 10, 856.
    Taramino, G., Sauer, M., Stauffer, J.L. Jr., Multani, D., Niu, X., Sakai, H., Hochholdinger, F., 2007. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J. 50, 649-659.
    Tariq, A., Pan, K., Olatunji, O.A., Graciano, C., Li, Z., Li, N., Song, D., Sun, F., Wu, X., Dakhil, M.A., et al., 2019. Impact of phosphorus application on drought resistant responses of Eucalyptus grandis seedlings. Physiol. Plantarum 166, 894-908.
    Tian, M.Z., Wang, H.F., Tian, Y., Hao, J., Guo, H.L., Chen, L.M., Wei, Y.K., Zhan, S.H., Yu, H.T., Chen, Y.F., 2024. ZmPHR1 contributes to drought resistance by modulating phosphate homeostasis in maize. Plant Biotechnol. J. doi: 10.1111/pbi.14431. (Epub ahead of print).
    Ticconi, C.A., Lucero, R.D., Sakhonwasee, S., Adamson, A.W., Creff, A., Nussaume, L., Desnos, T., Abel, S., 2009. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc. Natl. Acad. Sci. U. S. A 106, 14174-14179.
    Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., Charron, P., Duensing, N., Frei dit Frey, N., Gianinazzi-Pearson, V., et al., 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. U. S. A 110, 20117-20122.
    Vance, C.P., Uhde-Stone, C., Allan, D.L., 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423-447.
    Vogiatzaki, E., Baroux, C., Jung, J.Y., Poirier, Y., 2017. PHO1 exports phosphate from the chalazal seed coat to the embryo in developing Arabidopsis seeds. Curr. Biol. 27, 2893-2900.
    Wang, C., Huang, W., Ying, Y., Li, S., Secco, D., Tyerman, S., Whelan, J., Shou, H., 2012. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol. 196, 139-148.
    Wang, F., Cui, P.J., Tian, Y., Huang, Y., Wang, H.F., Liu, F., Chen, Y.F., 2020a. Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. Plant Biotechnol. J. 18, 2406-2419.
    Wang, F., Deng, M., Chen, J., He, Q., Jia, X., Guo, H., Xu, J., Liu, Y., Zhang, S., Shou, H., Mao, C., 2020b. CASEIN KINASE2-dependent phosphorylation of PHOSPHATE2 fine-tunes phosphate homeostasis in rice. Plant Physiol. 183, 250-262.
    Wang, G., Jin, Z., George, T.S., Feng, G., Zhang, L., 2023a. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytol. 238, 2578-2593.
    Wang, H., Xu, Q., Kong, Y.H., Chen, Y., Duan, J.Y., Wu, W.H., Chen, Y.F., 2014a. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 164, 2020-2029.
    Wang, J., Pan, W., Nikiforov, A., King, W., Hong, W., Li, W., Han, Y., Patton-Vogt, J., Shen, J., Cheng, L., 2021a. Identification of two glycerophosphodiester phosphodiesterase genes in maize leaf phosphorus remobilization. Crop J. 9, 95-108.
    Wang, R., Zhong, Y., Liu, X., Zhao, C., Zhao, J., Li, M., Ul Hassan, M., Yang, B., Li, D., Liu, R., et al., 2021b. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. J. Exp. Bot. 72, 3846-3863.
    Wang, X., Wang, H.F., Chen, Y., Sun, M.M., Wang, Y., Chen, Y.F., 2020c. The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in Arabidopsis and maize. Plant Cell 32, 3519-3534.
    Wang, X., Yuan, D., Liu, Y., Liang, Y., He, J., Yang, X., Hang, R., Jia, H., Mo, B., Tian, F., et al., 2023b. INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399-ZmPHO2 signaling module in maize. Plant Cell 35, 2208-2231.
    Wang, Y., Wang, F., Lu, H., Liu, Y., Mao, C., 2021c. Phosphate uptake and transport in plants: an elaborate regulatory system. Plant Cell Physiol. 62, 564-572.
    Wang, Y., Wang, Z., Du, Q., Wang, K., Zou, C., Li, W.X., 2023c. The long non-coding RNA PILNCR2 increases low phosphate tolerance in maize by interfering with miRNA399-guided cleavage of ZmPHT1s. Mol. Plant 16, 1146-1159.
    Wang, Z., Ruan, W., Shi, J., Zhang, L., Xiang, D., Yang, C., Li, C., Wu, Z., Liu, Y., Yu, Y., et al., 2014b. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc. Natl. Acad. Sci. U. S. A 111, 14953-14958.
    Willmann, M., Gerlach, N., Buer, B., Polatajko, A., Nagy, R., Koebke, E., Jansa, J., Flisch, R., Bucher, M., 2013. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front. Plant Sci. 4, 533.
    Wright, D.P., Scholes, J.D., Read, D.J., Rolfe, S.A., 2005. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol. 167, 881-896.
    Wu, F., Yahaya, B.S., Gong, Y., He, B., Gou, J., He, Y., Li J., Kang Y., Xu J., Wang Q. et al., 2024. ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize. PLoS Genet. 20, e1011135.
    Xiao, J., Xie, X., Li, C., Xing, G., Cheng, K., Li, H., Liu, N., Tan, J., Zheng, W., 2021. Identification of SPX family genes in the maize genome and their expression under different phosphate regimes. Plant Physiol. Biochem. 168, 211-220.
    Xu, C., Tai, H., Saleem, M., Ludwig, Y., Majer, C., Berendzen, K. W., Nagel, K. A., Wojciechowski, T., Meeley, R.B., Taramino, G., et al., 2015. Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shoot-borne root formation. New Phytol. 207, 1123-1133.
    Xu, L., Zhao, H., Wan, R., Liu, Y., Xu, Z., Tian, W., Ruan, W., Wang, F., Deng, M., Wang, J., et al., 2019. Identification of vacuolar phosphate efflux transporters in land plants. Nat. Plants 5, 84-94.
    Xu, Y., Bao, H., Fei, H., Zhou, W., Li, X., Liu, F., 2021. Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 558, 196-201.
    Xu, Y., Liu, F., Li, X., Cheng, B., 2018. The mycorrhiza-induced maize ZmPt9 gene affects root development and phosphate availability in nonmycorrhizal plant. Plant Signal. Behav. 13, e1542240.
    Yan, P., Du, Q., Chen, H., Guo, Z., Wang, Z., Tang, J., Li, W.X., 2023. Biofortification of iron content by regulating a NAC transcription factor in maize. Science 382, 1159-1165.
    Yang, S.Y., Lin, W.Y., Hsiao, Y.M., Chiou, T.J., 2024. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. Plant Cell 36, 1504-1523.
    Yang, Z., Yang, J., Wang, Y., Wang, F., Mao, W., He, Q., Xu, J., Wu, Z., Mao, C., 2020. PROTEIN PHOSPHATASE95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice. Plant Cell 32, 740-757.
    Ye, Q., Wang, H., Su, T., Wu, W.H., Chen, Y.F., 2018. The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in Arabidopsis. Plant Cell 30, 1062-1076.
    Yu, B., Zhou, C., Wang, Z., Bucher, M., Schaaf, G., Sawers, R. J. H., Chen, X., Hochholdinger, F., Zou, C., Yu, P., 2024. Maize zinc uptake is influenced by arbuscular mycorrhizal symbiosis under various soil phosphorus availabilities. New Phytol. 243, 1936-1950.
    Yu, T., Liu, C., Lu, X., Bai, Y., Zhou, L., Cai, Y., 2019. ZmAPRG, an uncharacterized gene, enhances acid phosphatase activity and Pi concentration in maize leaf during phosphate starvation. Theor. Appl. Genet. 132, 1035-1048.
    Zanin, L., Venuti, S., Zamboni, A., Varanini, Z., Tomasi, N., Pinton, R., 2017. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions. BMC Genom. 18, 154.
    Zhang, J., Gu, M., Liang, R., Shi, X., Chen, L., Hu, X., Wang, S., Dai, X., Qu, H., Li, H., et al., 2021. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions. New Phytol. 229, 1598-1614.
    Zhang, L., Chia, J.M., Kumari, S., Stein, J.C., Liu, Z., Narechania, A., Maher, C.A., Guill, K., McMullen M. D., Ware D., 2009. A genome-wide characterization of microRNA genes in maize. PLoS Genet. 5, e1000716.
    Zhang, L., Zhou, J., George, T.S., Limpens, E., Feng, G., 2022a. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci. 27, 402-411.
    Zhang, Q., Tian, S., Chen, G., Tang, Q., Zhang, Y., Fleming, A.J., Zhu, X.G., Wang, P., 2024. Regulatory NADH dehydrogenase-like complex optimizes C4 photosynthetic carbon flow and cellular redox in maize. New Phytol. 241, 82-101.
    Zhang, W., Gong, J., Zhang, Z., Song, L., Lambers, H., Zhang, S., Dong, J., Dong, X., Hu, Y., 2023. Soil phosphorus availability alters the correlations between root phosphorus-uptake rates and net photosynthesis of dominant C3 and C4 species in a typical temperate grassland of Northern China. New Phytol. 240, 157-172.
    Zhang, Y., Li, T.T., Wang, L.F., Guo, J.X., Lu, K.K., Song, R.F., Zuo, J.X., Chen, H.H., Liu, W.C., 2022b. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis. Plant J. 111, 269-281.
    Zheng, B., Li, Y.T., Wu, Q.P., Zhao, W., Ren, T.H., Zhang, X.H., Li, G., Ning, T.Y., Zhang, Z.S., 2023. Maize (Zea mays L.) planted at higher density utilizes dynamic light more efficiently. Plant Cell Environ. 46, 3305-3322.
    Zhong, Y., Pan, X., Wang, R., Xu, J., Guo, J., Yang, T., Zhao, J., Nadeem, F., Liu, X., Shan, H., et al., 2020. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate. Plant Physiol. 184, 374-392.
    Zhong, Y., Wang, Y., Guo, J., Zhu, X., Shi, J., He, Q., Liu, Y., Wu, Y., Zhang, L., Lv. Q., et al., 2018. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytol. 219, 135-148.
    Zhou, J., Jiao, F., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W., Wu, P., 2008. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol. 146, 1673-1686.
    Zhu, J., Zhou, Y., Li, J., Li, H., 2021. Genome-wide investigation of the phospholipase C gene family in Zea mays. Front. Genet. 11, 611414.
    Zou, T., Zhang, X., Davidson, E.A., 2022. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81-87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return