Abadi, S., Avram, O., Rosset, S., Pupko, T., Mayrose, I., 2020. ModelTeller: model selection for optimal phylogenetic reconstruction using machine learning. Mol. Biol. Evol. 37, 3338-3352.
|
Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaria, J., Fadhel, M.A., Al-Amidie, M., Farhan, L., 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53.
|
Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M., 2010. The Balanced Accuracy and its Posterior Distribution. Presented at the 2010 20th international conference on pattern recognition, IEEE, pp. 3121-3124.
|
Burgstaller-Muehlbacher, S., Crotty, S.M., Schmidt, H.A., Reden, F., Drucks, T., von Haeseler, A., 2023. ModelRevelator: fast phylogenetic model estimation via deep learning. Mol. Phylogenet. Evol. 188, 107905.
|
Franklin, J., 2005. The elements of statistical learning: data mining, inference and prediction. Math. Intel. 27, 83-85.
|
Lajaaiti, I., Lambert, S., Voznica, J., Morlon, H., Hartig, F., 2023. A comparison of deep learning architectures for inferring parameters of diversification models from extant phylogenies. bioRxiv 2023.03.03.530992.
|
Lambert, S., Voznica, J., Morlon, H., 2023. Deep learning from phylogenies for diversification analyses. Syst. Biol. 72, 1262-1279.
|
Leuchtenberger, A.F., Crotty, S.M., Drucks, T., Schmidt, H.A., Burgstaller-Muehlbacher, S., 2020. Distinguishing felsenstein zone from farris zone using neural networks. Mol. Biol. Evol. 37, 3632-3641.
|
Murphy, K.P., 2012. Machine Learning: a Probabilistic Perspective. MIT press.
|
Nesterenko, L., Boussau, B., Jacob, L., 2022. Phyloformer: towards fast and accurate phylogeny estimation with self-attention networks. bioRxiv 2022.06.24.496975 .
|
Smith, M.L., Hahn, M.W., 2023. Phylogenetic inference using generative adversarial networks. Bioinformatics 39, btad543.
|
Suvorov, A., Hochuli, J., Schrider, D.R., 2020. Accurate inference of tree topologies from multiple sequence alignments using deep learning. Syst. Biol. 69, 221-233.
|
Trost, J., Haag, J., Hohler, D., Nesterenko, L., Jacob, L., Stamatakis, A., Boussau, B., n.d. Simulations of sequence evolution: how (un)realistic they really are and why. bioRxiv 2023.07.11.548509.
|
Voznica, J., Zhukova, A., Boskova, V., Saulnier, E., Lemoine, F., Moslonka-Lefebvre, M., Gascuel, O., 2022. Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks. Nat. Commun. 13, 3896.
|
Wang, H.-C., Minh, B.Q., Susko, E., Roger, A.J., 2018. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216-235.
|
Wang, Z., Sun, J., Gao, Y., Xue, Y., Zhang, Y., Li, K., Zhang, W., Zhang, C., Zu, J., Zhang, L., 2023. Fusang: a framework for phylogenetic tree inference via deep learning. Nucleic Acids Res. 51, 10909-10923.
|
Zaharias, P., Grosshauser, M., Warnow, T., 2022. Re-evaluating deep neural networks for phylogeny estimation: the issue of taxon sampling. J. Comput. Biol. 29, 74-89.
|
Zou, Z., Zhang, H., Guan, Y., Zhang, J., 2020. Deep residual neural networks resolve quartet molecular phylogenies. Mol. Biol. Evol. 37, 1495-1507.
|