9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 3
Mar.  2025
Turn off MathJax
Article Contents

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development

doi: 10.1016/j.jgg.2025.01.001
Funds:

This research was supported by the National Key Research and Development Program of China (2021YFF1000304), the National Natural Science Foundation of China (32222060), and Anhui Agricultural University (RC422404) to J.Y.

  • Received Date: 2024-09-29
  • Accepted Date: 2025-01-03
  • Rev Recd Date: 2025-01-03
  • Available Online: 2025-07-11
  • Publish Date: 2025-01-09
  • Mitochondria are semi-autonomous organelles present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts. Despite their recognized importance, the specific roles of mTERF proteins in maize remain largely unexplored. Here, we clone and functionally characterize the maize mTERF18 gene. Our findings reveal that mTERF18 mutations lead to severely undifferentiated embryos, resulting in abortive phenotypes. Early kernel exhibits abnormal basal endosperm transfer layer and a significant reduction in both starch and protein accumulation in mterf18. We identify the mTERF18 gene through mapping-based cloning and validate this gene through allelic tests. mTERF18 is widely expressed across various maize tissues and encodes a highly conserved mitochondrial protein. Transcriptome data reveal that mTERF18 mutations disrupt transcriptional termination of the nad6 gene, leading to undetectable levels of Nad6 protein and reduced complex I assembly and activity. Furthermore, transmission electron microscopy observation of mterf18 endosperm uncover severe mitochondrial defects. Collectively, these findings highlight the critical role of mTERF18 in mitochondrial gene transcription termination and its pivotal impact on maize kernel development.
  • loading
  • Alcazar-Fabra, M., Navas, P., Brea-Calvo, G., 2016. Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochimi. Biophys. Acta 1857, 1073-1078.
    Babiychuk, E., Vandepoele, K., Wissing, J., Garcia-Diaz, M., De Rycke, R., Akbari, H., Joubes, J., Beeckman, T., Jansch, L., Frentzen, M., et al., 2011. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc. Natl. Acad. Sci. U. S. A. 108, 6674-6679.
    Blaha, G.M., Wade, J.T., 2022. Transcription-translation coupling in Bacteria. Annu. Rev. Genet. 56, 187-205.
    Camara, Y., Asin-Cayuela, J., Park, C.B., Metodiev, M.D., Shi, Y., Ruzzenente, B., Kukat, C., Habermann, B., Wibom, R., Hultenby, K., et al., 2011. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 13, 527-539.
    Cai, M., Li, S., Sun, F., Sun, Q., Zhao, H., Ren, X., Zhao, Y., Tan, B., Zhang, Z., Qiu, F., 2017. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. Plant J. 91, 132-144.
    Cao, S., Liu, R., Sayyed, A., Sun, F., Song, R., Wang, X., Xiu, Z., Li, X., Tan, B., 2021. Regulator of chromosome condensation 1-domain protein DEK47 functions on the intron splicing of mitochondrial Nad2 and seed development in maize. Front. Plant Sci. 12, 695249.
    Clifton, S.W., Minx, P., Fauron, C.M., Gibson, M., Allen, J.O., Sun, H., Thompson, M., Barbazuk, W.B., Kanuganti, S., Tayloe, C., et al., 2004. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 136, 3486-3503.
    Dai, D., Ma, Z., Song, R., 2021. Maize kernel development. Mol. Breed 41 (1), e2.
    Ding, S., Zhang, Y., Hu, Z., Huang, X., Zhang, B., Lu, Q., Wen, X., Wang, Y., Lu, C., 2019. mTERF5 acts as a transcriptional pausing factor to positively regulate transcription of chloroplast psbEFLJ. Mol. Plant 12, 1259-1277.
    Dudkina, N.V., Heinemeyer, J., Sunderhaus, S., Boekema, E.J., Braun, H.P., 2006. Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci. 11, 232-240.
    Gu, L., Hou, Y., Sun, Y., Chen, X., Wang, H., Zhu, B., Du, X., 2024. ZmB12D, a target of transcription factor ZmWRKY70, enhances the tolerance of Arabidopsis to submergence. Plant Physiol. Biochem. 206, 108322.
    Haapanen, O., Reidelbach, M., Sharma, V., 2020. Coupling of quinone dynamics to proton pumping in respiratory complex I. Biochim. Biophys. Bioenergetics 1861, 148287.
    Hammani, K., Barkan, A., 2014. An mTERF domain protein functions in group II intron splicing in maize chloroplasts. Nucleic Acids Res. 42, 5033-5042.
    Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M.C., Wang, B., Campbell, M.S., Stein, J.C., Wei, X., Chin, C.S., et al., 2017. Improved maize reference genome with single-molecule technologies. Nature 546, 524-527.
    Kim, M., Lee, U., Small, I., des Francs-Small, C.C., Vierling, E., 2012. Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. Plant Cell 24, 3349-3365.
    Kim, M., Schulz, V., Brings, L., Schoeller, T., Kuhn, K., Vierling, E., 2021. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. New Phytol. 232, 2026-2042.
    Kleine, T., 2012. Arabidopsis thaliana mTERF proteins: evolution and functional classification. Front. Plant Sci. 3, 233.
    Kruse, B., Narasimhan, N., Attardi, G., 1989. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58, 391-397.
    Leroux, B.M., Goodyke, A.J., Schumacher, K.I., Abbott, C.P., Clore, A.M., Yadegari, R., Larkins, B.A., Dannenhoffer, J.M., 2014. Maize early endosperm growth and development: from fertilization through cell type differentiation. Am. J. Bot. 101, 1259-1274.
    Li, X., Zhang, Y., Hou, M., Sun, F., Shen, Y., Xiu, Z., Wang, X., Chen, Z., Sun, S., Small, I., et al., 2014. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J. 79, 797-809.
    Liu, Y., Xiu, Z., Meeley, R., Tan, B., 2013. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 25, 868-883.
    Meteignier, L.V., Ghandour, R., Meierhoff, K., Zimmerman, A., Chicher, J., Baumberger, N., Alioua, A., Meurer, J., Zoschke, R., Hammani, K., 2020. The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons. New Phytol. 227, 1376-1391.
    Ma, S., Yang, W., Liu, X., Li, S., Li, Y., Zhu, J., Zhang, C., Lu, X., Zhou, X., Chen, R., 2022. Pentatricopeptide repeat protein CNS1 regulates maize mitochondrial complex III assembly and seed development. Plant Physiol. 189, 611-627.
    Núñez-Delegido, E., Robles, P., Quesada, V., 2020. Functional analysis of mTERF5 and mTERF9 contribution to salt tolerance, plastid gene expression and retrograde signalling in Arabidopsis thaliana. Plant Biol (Stuttg). 22 (3), 459–471.
    Pan, Z., Ren, X., Zhao, H., Liu, L., Tan, Z., Qiu, F. 2019. A mitochondrial transcription termination factor, ZmSmk3, is required for nad1 intron4 and nad4 intron1 splicing and kernel development in maize. G3 (Bethesda, Md.) 9, 2677-2686.
    Park, C.B., Asin-Cayuela, J., Camara, Y., Shi, Y., Pellegrini, M., Gaspari, M., Wibom, R., Hultenby, K., Erdjument-Bromage, H., Tempst, P., et al., 2007. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell 130, 273-285.
    Qi, W., Lu, L., Huang, S., Song, R., 2019. Maize Dek44 encodes mitochondrial ribosomal protein l9 and is required for seed development. Plant Physiol. 180, 2106-2119.
    Quesada, V., Sarmiento-Manus, R., Gonzalez-Bayon, R., Hricova, A., Perez-Marcos, R., Gracia-Martinez, E., Medina-Ruiz, L., Leyva-Diaz, E., Ponce, M.R., Micol, J.L., 2011. Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. Plant J. 68, 738-753.
    Ren, R., Yan, X., Zhao, Y., Wei, Y., Lu, X., Zang, J., Wu, J., Zheng, G., Ding, X., Zhang, X., et al., 2020. The novel E-subgroup pentatricopeptide repeat protein DEK55 is responsible for RNA editing at multiple sites and for the splicing of nad1 and nad4 in maize. BMC Plant Biol. 20, 553.
    Ren, X., Pan, Z., Zhao, H., Zhao, J., Cai, M., Li, J., Zhang, Z., Qiu, F., 2017. EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J. Exp. Bot. 68, 4571-4581.
    Robles, P, Micol, J.L., Quesada, V., 2015. Mutations in the plant-conserved MTERF9 alter chloroplast gene expression, development and tolerance to abiotic stress in Arabidopsis thaliana. Physiol. Plant 154 (2), 297–313.
    Robles, P., Núñez-Delegido, E., Ferrández-Ayela, A., Sarmiento-Mañús, R., Micol, J.L., Quesada, V., 2018. Arabidopsis mTERF6 is required for leaf patterning. Plant Sci. 266, 117–129.
    Roberti, M., Polosa, P.L., Bruni, F., Manzari, C., Deceglie, S., Gadaleta, M.N., Cantatore, P., 2009. The MTERF family proteins: mitochondrial transcription regulators and beyond. Biochim. Biophys. Acta 1787, 303-311.
    Robles, P., Quesada, V., 2021. Research Progress in the Molecular Functions of Plant mTERF Proteins. Cells 10(2):205.
    Sabelli, P.A., Larkins, B.A., 2009. The development of endosperm in grasses. Plant Physiol. 149, 14-26.
    Sloan, D.B., Wu, Z., Sharbrough, J., 2018. Correction of Persistent Errors in Arabidopsis Reference Mitochondrial Genomes. Plant Cell 30, 525-527.
    Soufari, H., Parrot, C., Kuhn, L., Waltz, F., Hashem, Y., 2020. Specific features and assembly of the plant mitochondrial complex I revealed by cryo-EM. Nat. Commun. 11, 5195.
    Sun, F., Zhang, X., Shen, Y., Wang, H., Liu, R., Wang, X., Gao, D., Yang, Y., Liu, Y., Tan, B., 2018. The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize. Plant J. 95, 919-932.
    Unseld, M., Marienfeld, J.R., Brandt, P., Brennicke, A., 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 15, 57-61.
    Wang, C., Molodtsov, V., Firlar, E., Kaelber, J.T., Blaha, G., Su, M., Ebright, R.H., 2020a. Structural basis of transcription-translation coupling. Science 369, 1359-1365.
    Wang, H., Sayyed, A., Liu, X., Yang, Y., Sun, F., Wang, Y., Wang, M., Tan, B., 2020b. SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. J. Integr. Plant Biol. 62, 777-792.
    Wang, T., Chang, Y., Zhao, K., Dong, Q., Yang, J., 2022a. Maize RNA 3'-terminal phosphate cyclase-like protein promotes 18S pre-rRNA cleavage and is important for kernel development. Plant Cell 34, 1957-1979.
    Wang, Z., Chen, W., Zhang, S., Lu, J., Chen, R., Fu, J., Gu, R., Wang, G., Wang, J., Cui, Y., 2022b. Dek504 encodes a mitochondrion-targeted E+-type pentatricopeptide repeat protein essential for rna editing and seed development in maize. Int. J. Mol. Sci. 23 (5), 2513.
    Xiong, H., Wang, J., Huang, C., Rochaix, J.D., Lin, F., Zhang, J., Ye, L., Shi, X., Yu, Q., Yang, Z., 2020. mTERF8, a member of the mitochondrial transcription termination factor family, is involved in the transcription termination of chloroplast gene psbJ. Plant Physiol. 182, 408-423.
    Xiu, Z., Sun, F., Shen, Y., Zhang, X., Jiang, R., Bonnard, G., Zhang, J., Tan, B., 2016. EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize. Plant J. 85, 507-519.
    Yang, H., Xiu, Z., Wang, L., Cao, S.K., Li, X., Sun, F., Tan, B., 2020. Two pentatricopeptide repeat proteins are required for the splicing of nad5 introns in maize. Front. Plant Sci. 11, 732.
    Yang, J., Fu, M., Ji, C., Huang, Y., Wu, Y., 2018. Maize oxalyl-CoA decarboxylase1 degrades oxalate and affects the seed metabolome and nutritional quality. Plant Cell 30, 2447-2462.
    Yang, Y., Ding, S., Liu, X., Tang, J., Wang, Y., Sun, F., Xu, C., Tan, B., 2021. EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize. RNA Biol. 18, 499-509.
    Zhang, Y., Cui, Y., Zhang, X., Yu, Q., Wang, X., Yuan, X., Qin, X., He, X., Huang, C., Yang, Z., 2018. A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development. Sci. Rep. 8, 11929.
    Zhao, Y., Cai, M., Zhang, X., Li, Y., Zhang, J., Zhao, H., Kong, F., Zheng, Y., Qiu, F., 2014. Genome-wide identification, evolution and expression analysis of mTERF gene family in maize. PloS One 9, e94126.
    Zhao, Z., Andersen, S.U., Ljung, K., Dolezal, K., Miotk, A., Schultheiss, S.J., Lohmann, J.U., 2010. Hormonal control of the shoot stem-cell niche. Nature 465, 1089-1092.
    Zheng, X., Li, Q., Li, C., An, D., Xiao, Q., Wang, W., and Wu, Y., 2019. Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation. Plant Cell 31, 2613-2635.
    Zhu, J., Lou, Y., Shi, Q., Zhang, S., Zhou, W., Yang, J., Zhang, C., Yao, X., Xu, T., Liu, J., et al., 2020. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nat. Plants 6, 360-367.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return