Brambilla, V., Gomez-Ariza, J., Cerise, M., Fornara, F., 2017. The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Front. Plant Sci. 8, 665.
|
Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C., et al., 2009. The genetic architecture of maize flowering time. Science 325, 714-718.
|
Cui, Y., Lin, Y., Wei, H., Pan, Y., He, H., Qian, H., Yang, L., Cao, X., Zhang, Z., Zeng, X., et al., 2024. Identification of salt tolerance-associated presence-absence variations in the OsMADS56 gene through the integration of DEGs dataset and eQTL analysis. New Phytol. 243, 833-838.
|
Cui, Y., Wang, J., Feng, L., Liu, S., Li, J., Qiao, W., Song, Y., Zhang, Z., Cheng, Y., Zhang, L., et al., 2020. A combination of long-day suppressor genes contributes to the northward expansion of rice. Front. Plant Sci. 11, 864.
|
Deng, L., Gao, B., Zhao, L., Zhang, Y., Zhang, Q., Guo, M., Yang, Y., Wang, S., Xie, L., Lou, H., et al., 2022. Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice. Genome Biol. 23, 7.
|
Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., Yoshimura, A., 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18, 926-936.
|
Du, A., Tian, W., Wei, M., Yan, W., He, H., Zhou, D., Huang, X., Li, S., Ouyang, X., 2017. The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol. Plant 10, 948-961.
|
Fan, J., Hua, H., Luo, Z., Zhang, Q., Chen, M., Gong, J., Wei, X., Huang, Z., Huang, X., Wang, Q., 2022. Whole-Genome Sequencing of 117 Chromosome Segment Substitution Lines for Genetic Analyses of Complex Traits in Rice. Rice 15, 5.
|
Farooq, M.A., Gao, S., Hassan, M.A., Huang, Z., Rasheed, A., Hearne, S., Prasanna, B., Li, X., Li, H., 2024. Artificial intelligence in plant breeding. Trends Genet. S0168-9525(24)00167-7.
|
Gao, H., Jin, M., Zheng, X.M., Chen, J., Yuan, D., Xin, Y., Wang, M., Huang, D., Zhang, Z., Zhou, K., et al., 2014. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. U. S. A. 111, 16337-16342.
|
Gomez-Ariza, J., Galbiati, F., Goretti, D., Brambilla, V., Shrestha, R., Pappolla, A., Courtois, B., Fornara, F., 2015. Loss of floral repressor function adapts rice to higher latitudes in Europe. J. Exp. Bot. 66, 2027-2039.
|
Gu, Z., Han, B., 2024. Unlocking the mystery of heterosis opens the era of intelligent rice breeding. Plant Physiol. 196, 735-744.
|
Guo, L., Wang, X., Zhao, M., Huang, C., Li, C., Li, D., et al., 2018. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Curr. Biol. 28, 3005-3015.
|
Guo, T., Mu, Q., Wang, J., Vanous, A.E., Onogi, A., Iwata, H., Li, X., Yu, J., 2020. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Res. 30, 673-683.
|
He, W., He, H., Yuan, Q., Zhang, H., Li, X., Wang, T., Yang, Y., Yang, L., Yang, Y., Liu, X., et al., 2024. Widespread inversions shape the genetic and phenotypic diversity in rice. Sci. Bull. (Beijing) 69, 593-596.
|
Hori, K., Matsubara, K., Yano, M., 2016. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theor. Appl. Genet. 129, 2241-2252.
|
Huang, L., Tang, J., Zhu, B., Chen, G., Chen, L., Bu, S., Zhu, H., Liu, Z., Li, Z., Meng, L., et al., 2024. QTL epistasis plays a role of homeostasis on heading date in rice. Sci. Rep. 14, 373.
|
Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al., 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501.
|
Huang, X., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., Zhao, Y., Li, W., Cheng, B., Xia, J., et al., 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629-633.
|
Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., et al., 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6, 6258.
|
Izawa, T., 2007. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J. Exp. Bot. 58, 3091-3097.
|
Jiang, Y., Reif, J.C., 2015. Modeling epistasis in genomic selection. Genetics 201, 759-768.
|
Jin, M., Liu, X., Jia, W., Liu, H., Li, W., Peng, Y., et al. 2018. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J. Integr. Plant Biol. 60, 465-480.
|
Jing, L., Rui, X., Wang, C., Lan, Q., Zheng, X., Wang, W., Ding, Y., Zhang, L., Wang, Y., Cheng, Y., et al., 2018. A heading date QTL, qHD7.2, from wild rice (Oryza rufipogon) delays flowering and shortens panicle length under long-day conditions. Sci. Rep. 8, 2928.
|
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., Shimamoto, K., 2008. Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774.
|
Komiya, R., Yokoi, S., Shimamoto, K., 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
|
Kuzmin, E., VanderSluis, B., Wang, W., Tan, G., Deshpande, R., Chen, Y., Usaj, M., Balint, A., Mattiazzi Usaj, M., van Leeuwen, J., et al., 2018. Systematic analysis of complex genetic interactions. Science 360, eaao1729.
|
Lee, S.Y., Jeung, J.U., Mo, Y., 2024. Allelic combinations of Hd1, Hd16, and Ghd7 exhibit pleiotropic effects on agronomic traits in rice. G3 (Bethesda) 14, jkad300.
|
Li, H., Ribaut, J.M., Li, Z., Wang, J., 2008. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor. Appl. Genet. 116, 243-260.
|
Li, X., Zhu, C., Yeh, C.T., Wu, W., Takacs, E.M., Petsch, K.A., Tian, F., Bai, G., Buckler, E.S., Muehlbauer, G.J., et al., 2012. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 22, 2436-2444.
|
Liu, H., Liu, H., Zhou, L., Zhang, Z., Zhang, X., Wang, M., Li, H., Lin, Z., 2015. Parallel Domestication of the Heading Date 1 gene in cereals. Mol. Biol. Evol. 32, 2726-2737.
|
Liu, J., Yi, Q., Dong, G., Chen, Y., Guo, L., Gao, Z., Zhu, L., Ren, D., Zhang, Q., Li, Q., et al., 2024. Improving rice quality by regulating the heading dates of rice varieties without yield penalties. Plants (Basel) 13, 2221.
|
Liang, Y., Liu, Q., Wang, X., Huang, C., Xu, G., Hey, S., et al., 2019. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol. 221, 2335-2347.
|
Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 12, e1005767.
|
Lu, L., Yan, W., Xue, W., Shao, D., Xing, Y., 2012. Evolution and association analysis of Ghd7 in rice. PLoS One 7, e34021.
|
Naranjo, L., Talon, M., Domingo, C., 2014. Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes. BMC Genomics 15, 101.
|
Ng, P.C., Henikoff, S., 2001. Predicting deleterious amino acid substitutions. Genome Res. 11, 863-874.
|
Qiu, L., Wu, Q., Wang, X., Han, J., Zhuang, G., Wang, H., Shang, Z., Tian, W., Chen, Z., Lin, Z., et al., 2021. Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. Nat. Food 2, 348-362.
|
Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al., 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112-1115.
|
Shen, G., Hu, W., Wang, X., Zhou, X., Han, Z., Sherif, A., Ayaad, M., Xing, Y., 2022. Assembly of yield heterosis of an elite rice hybrid is promising by manipulating dominant quantitative trait loci. J. Integr. Plant Biol. 64, 688-701.
|
Stitzer, M.C., Anderson, S.N., Springer, N.M., Ross-Ibarra, J., 2021. The genomic ecosystem of transposable elements in maize. PLOS Genet. 17, e1009768.
|
Su, H., Cao, L., Ren, Z., Sun, W., Zhu, B., Ma, S. et al., 2024. ZmELF6-ZmPRR37 module regulates maize flowering and salt response. Plant Biotechnol. J. 22, 929-945.
|
Sun, K., Huang, M., Zong, W., Xiao, D., Lei, C., Luo, Y., Song, Y., Li, S., Hao, Y., Luo, W., et al., 2022. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits. J. Genet. Genomics 49, 437-447.
|
Takahashi, Y., Teshima, K.M., Yokoi, S., Innan, H., Shimamoto, K., 2009. Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc. Natl. Acad. Sci. U. S. A. 106, 4555-4560.
|
Vicentini, G., Biancucci, M., Mineri, L., Chirivi, D., Giaume, F., Miao, Y., Kyozuka, J., Brambilla, V., Betti, C., Fornara, F., 2023. Environmental control of rice flowering time. Plant Commun. 4, 100610.
|
Wang, C., Dai, S., Zhang, Z.L., Lao, W., Wang, R., Meng, X., Zhou, X., 2021. Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis. J. Integr. Plant Biol. 63, 828-833.
|
Wang, P., Xiong, Y., Gong, R., Yang, Y., Fan, K., Yu, S., 2019. A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice. Sci. Rep. 9, 9603.
|
Wang, P., Yang, Y., Li, D., Yu, Z., Zhang, B., Zhou, X., Xiong, L., Zhang, J., Wang, L., Xing, Y., 2024. Powerful QTL mapping and favorable allele mining in an all-in-one population: a case study of heading date. Natl. Sci. Rev. 11, nwae222.
|
Wang, X., Zhou, T., Li, G., Yao, W., Hu, W., Wei, X., Che, J., Yang, H., Shao, L., Hua, J., et al., 2022. A Ghd7-centered regulatory network provides a mechanistic approximation to optimal heterosis in an elite rice hybrid. Plant J. 112, 68-83.
|
Wei, X., Chen, M., Zhang, Q., Gong, J., Liu, J., Yong, K., Wang, Q., Fan, J., Chen, S., Hua, H., et al., 2024. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 385, eadm8762.
|
Wei, X., Qiao, W., Yuan, N., Chen, Y., Wang, R., Cao, L., Zhang, W., Yang, Q., Zeng, H., 2014. Domestication and association analysis of Hd1 in Chinese mini-core collections of rice. Genet. Resour. Crop Evol. 61, 121-142.
|
Wei, X., Qiao, W.H., Chen, Y.T., Wang, R.S., Cao, L.R., Zhang, W.X., Yuan, N.N., Li, Z.C., Zeng, H.L., Yang, Q.W., 2012. Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol. Ecol. 21, 5073-5087.
|
Wei, X., Qiu, J., Yong, K., Fan, J., Zhang, Q., Hua, H., Liu, J., Wang, Q., Olsen, K.M., Han, B., et al., 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 53, 243-253.
|
Wei, X., Xu, J., Guo, H., Jiang, L., Chen, S., Yu, C., Zhou, Z., Hu, P., Zhai, H., Wan, J., 2010. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153, 1747-1758.
|
Wu, W., Zheng, X.M., Lu, G., Zhong, Z., Gao, H., Chen, L., Wu, C., Wang, H.J., Wang, Q., Zhou, K., et al., 2013. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc. Natl. Acad. Sci. U. S. A. 110, 2775-2780.
|
Xie, X., Zhang, Q., Liu, Y.G., 2024. Rice GWAS-to-Gene uncovers the polygenic basis of traits. Sci. China Life Sci. https://doi.org/10.1007/s11427-024-2716-5.
|
Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J., Olsen, M.S., Varshney, R.K., Prasanna, B.M., Qian, Q., 2022. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol. Plant 15, 1664-1695.
|
Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al., 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767.
|
Yamaguchi, N., Winter, C.M., Wu M.F., Kanno, Y., Yamaguchi, A., Seo, M., Wagner, D., 2014. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344, 638-641.
|
Yan, W., Liu, H., Zhou, X., Li, Q., Zhang, J., Lu, L., Liu, T., Liu, H., Zhang, C., Zhang, Z., et al., 2013. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res. 23, 969-971.
|
Yan, W.H., Wang, P., Chen, H.X., Zhou, H.J., Li, Q.P., Wang, C.R., Ding, Z.H., Zhang, Y.S., Yu, S.B., Xing, Y.Z., et al., 2011. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4, 319-330.
|
Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M., 2011. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82.
|
Yang, Z., Jin, L., Zhu, H., Wang, S., Zhang, G., Liu, G., 2018. Analysis of epistasis among QTLs on heading date based on single segment substitution lines in rice. Sci. Rep. 8, 3059.
|
Zhan, P., Ma, S., Xiao, Z., Li, F., Wei, X., Lin, S., Wang, X., Ji, Z., Fu, Y., Pan, J., et al., 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics 49, 405-413.
|
Zhang, B., Liu, H., Qi, F., Zhang, Z., Li, Q., Han, Z., Xing, Y., 2019. Genetic Interactions Among Ghd7, Ghd8, OsPRR37 and Hd1 Contribute to Large Variation in Heading Date in Rice. Rice 12, 48.
|
Zhao, J., Chen, H., Ren, D., Tang, H., Qiu, R., Feng, J., Long, Y., Niu, B., Chen, D., Zhong, T., et al., 2015. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol. 208, 936-948.
|
Zhao, Q., Huang, X., Lin, Z., Han, B., 2010. SEG-Map: A novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3, 98-102.
|
Zhao, H.Y., Shan, J.X., Ye, W.W., Dong, N.Q., Kan, Y., Yang, Y.B., Yu, H.X., Lu, Z.Q., Guo, S.Q., Lei, J.J., et al., 2024. A QTL GN1.1, encoding FT-L1, regulates grain number and yield by modulating polar auxin transport in rice. J Integr Plant Biol. https://doi.org/10.1111/jipb.13749.
|
Zhou, X., Nong, C., Wu, B., Zhou, T., Zhang, B., Liu, X., Gao, G., Mi, J., Zhang, Q., Liu, H., et al., 2021. Combinations of Ghd7, Ghd8, and Hd1 determine strong heterosis of commercial rice hybrids in diverse ecological regions. J. Exp. Bot. 72, 6963-6976.
|
Zong, W., Ren, D., Huang, M., Sun, K., Feng, J., Zhao, J., Xiao, D., Xie, W., Liu, S., Zhang, H., et al., 2021. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol. 229, 1635-1649.
|