9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

Genomic characterization reveals distinct mutational landscape of acral melanoma in East Asian

doi: 10.1016/j.jgg.2024.12.018
Funds:

This work was supported by the National Key Research and Development Program (2023YFC2506404), the Natural Science Foundation of China (82272848, 82425047, 82272676), Beijing Municipal Administration of Hospitals' Ascent Plan (DFL20220901), Beijing Natural Science Foundation (7242021, L248021), Sichuan Provincial Science and Technology Department Key Research and Development Program (2024YFHZ0004).

  • Received Date: 2024-12-17
  • Accepted Date: 2024-12-24
  • Rev Recd Date: 2024-12-24
  • Available Online: 2025-07-11
  • Publish Date: 2025-01-09
  • Acral melanoma, the most common melanoma subtype in East Asia, is associated with a poor prognosis. This study aims to comprehensively analyze the genomic characteristics of acral melanoma in East Asians. We conduct whole-genome sequencing of 55 acral melanoma tumors and perform data mining with relevant clinical data. Our findings reveal a unique mutational profile in East Asian acral melanoma, characterized by fewer point mutations and structural variations, a higher prevalence of NRAS mutations, and a lower frequency of BRAF mutations compared to patients of European descent. Notably, we identify previously underestimated ultraviolet radiation signatures and their significant association with BRAF and NRAS mutations. Structural rearrangement signatures indicate distinct mutational processes in BRAF-driven versus NRAS-driven tumors. We also find that homologous recombination deficiency with MAPK pathway mutations correlated with poor prognosis. The structural variations and amplifications in EP300, TERT, RAC1, and LZTR1 point to potential therapeutic targets tailored to East Asian populations. The high prevalence of whole-genome duplication events in BRAF/NRAS-mutated tumors suggests a synergistic carcinogenic effect that warrants further investigation. In summary, our study provides important insights into the genetic underpinnings of acral melanoma in East Asians, creating opportunities for targeted therapies.
  • loading
  • Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A., Behjati, S., Biankin, A.V., Bignell, G.R., Bolli, N., Borg, A., Boerresen-Dale, A.L., et al., 2013. Signatures of mutational processes in human cancer. Nature 500, 415-421.
    Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Tian Ng, A.W., Wu, Y., Boot, A., Covington, K.R., Gordenin, D.A., Bergstrom, E.N., et al., 2020. The repertoire of mutational signatures in human cancer. Nature 578, 94-101.
    Asgari, M.M., Shen, L., Sokil, M.M., Yeh, I., Jorgenson, E., 2017. Prognostic factors and survival in acral lentiginous melanoma. Br. J. Dermatol. 177, 428-435.
    Attar, N., Kurdistani, S.K., 2017. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb. Perspect. Med. 7, a026534.
    Bai, X., Kong, Y., Chi, Z., Sheng, X., Cui, C., Wang, X., Mao, L., Tang, B., Li, S., Lian, B., et al., 2017. MAPK pathway and TERT promoter gene mutation pattern and its prognostic value in melanoma patients: a retrospective study of 2,793 cases. Clin. Cancer Res. 23, 6120-6127.
    Bai, X., Shoushtari, A.N., Betof Warner, A., Si, L., Tang, B., Cui, C., Yang, X., Wei, X., Quach, H.T., Cann, C.G., et al., 2022. Benefit and toxicity of programmed death-1 blockade vary by ethnicity in patients with advanced melanoma: an international multicentre observational study. Br. J. Dermatol. 187, 401-410.
    Bello, D.M., Chou, J.F., Panageas, K.S., Brady, M.S., Coit, D.G., Carvajal, R.D., Ariyan, C.E., 2013. Prognosis of acral melanoma: a series of 281 patients. Ann. Surg Oncol. 20, 3618-3625.
    Blokzijl, F., Janssen, R., van Boxtel, R., Cuppen, E., 2018. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med. 10, 33.
    Byeon, S., Cho, H.J., Jang, K.T., Kwon, M., Lee, J., Lee, J., Kim, S.T., 2021. Molecular profiling of asian patients with advanced melanoma receiving check-point inhibitor treatment. ESMO Open 6, 100002.
    Cancer Genome Atlas, N., 2015. Genomic classification of cutaneous melanoma. Cell 161, 1681-1696.
    Chalmers, Z.R., Connelly, C.F., Fabrizio, D., Gay, L., Ali, S.M., Ennis, R., Schrock, A., Campbell, B., Shlien, A., Chmielecki, J., et al., 2017. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34.
    Chang, J.W., Yeh, K.Y., Wang, C.H., Yang, T.S., Chiang, H.F., Wei, F.C., Kuo, T.T., Yang, C.H., 2004. Malignant melanoma in taiwan: a prognostic study of 181 cases. Melanoma Res. 14, 537-541.
    Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
    Chi, Z., Li, S., Sheng, X., Si, L., Cui, C., Han, M., Guo, J., 2011. Clinical presentation, histology, and prognoses of malignant melanoma in ethnic Chinese: a study of 522 consecutive cases. BMC Cancer 11, 85.
    Farshidfar, F., Rhrissorrakrai, K., Levovitz, C., Peng, C., Knight, J., Bacchiocchi, A., Su, J., Yin, M., Sznol, M., Ariyan, S., et al., 2022. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat. Commun. 13, 898.
    Guerin, T.M., Marcand, S., 2022. Breakage in breakage-fusion-bridge cycle: an 80-year-old mystery. Trends Genet. 38, 641-645.
    Hadi, K., Yao, X., Behr, J.M., Deshpande, A., Xanthopoulakis, C., Tian, H., Kudman, S., Rosiene, J., Darmofal, M., DeRose, J., et al., 2020. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197-210.
    Hayward, N.K., Wilmott, J.S., Waddell, N., Johansson, P.A., Field, M.A., Nones, K., Patch, A.M., Kakavand, H., Alexandrov, L.B., Burke, H., et al., 2017. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175-180.
    ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020. Pan-cancer analysis of whole genomes. Nature 578, 82-93.
    Ishihara, K., Saida, T., Otsuka, F., Yamazaki, N., 2008. Statistical profiles of malignant melanoma and other skin cancers in Japan: 2007 update. Int. J. Clin. Oncol. 13, 33-41.
    Islam, S.M.A., Wu, Y., Diaz-Gay, M., Bergstrom, E.N., He, Y., Barnes, M., Vella, M., Wang, J., Teague, J.W., Clapham, P., et al., 2022. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom. 2, 100179.
    Kim, S., Scheffler, K., Halpern, A.L., Bekritsky, M.A., Noh, E., Kallberg, M., Chen, X., Kim, Y., Beyter, D., Krusche, P., et al., 2018. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591-594.
    Lawrence, M.S., Stojanov, P., Mermel, C.H., Robinson, J.T., Garraway, L.A., Golub, T.R., Meyerson, M., Gabriel, S.B., Lander, E.S., Getz, G., 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495-501.
    Lee, J.H., Choi, J.W., Kim, Y.S., 2011. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br. J. Dermatol. 164, 776-784.
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754-1760.
    Li, Y., Lin, S., Li, L., Tang, Z., Hu, Y., Ban, X., Zeng, T., Zhou, Y., Zhu, Y., Gao, S., et al., 2018. PDSS2 deficiency induces hepatocarcinogenesis by decreasing mitochondrial respiration and reprogramming glucose metabolism. Cancer Res. 78, 4471-4481.
    Li, Y., Roberts, N.D., Wala, J.A., Shapira, O., Schumacher, S.E., Kumar, K., Khurana, E., Waszak, S., Korbel, J.O., Haber, J.E., et al., 2020. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112-121.
    Liang, W.S., Hendricks, W., Kiefer, J., Schmidt, J., Sekar, S., Carpten, J., Craig, D.W., Adkins, J., Cuyugan, L., Manojlovic, Z., et al., 2017. Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma. Genome Res. 27, 524-532.
    Liu, H., Gao, J., Feng, M., Cheng, J., Tang, Y., Cao, Q., Zhao, Z., Meng, Z., Zhang, J., Zhang, G., et al., 2024. Integrative molecular and spatial analysis reveals evolutionary dynamics and tumor-immune interplay of in situ and invasive acral melanoma. Cancer Cell 42, 1067-1085.
    Luk, N.M., Ho, L.C., Choi, C.L., Wong, K.H., Yu, K.H., Yeung, W.K., 2004. Clinicopathological features and prognostic factors of cutaneous melanoma among Hong Kong Chinese. Clin. Exp. Dermatol. 29, 600-604.
    Mao, L., Qi, Z., Zhang, L., Guo, J., Si, L., 2021. Immunotherapy in acral and mucosal melanoma: current status and future directions. Front. Immunol. 12, 680407.
    Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J., Haase, K., Van Loo, P., Davies, H., Stratton, M.R., Campbell, P.J., 2017. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029-1041.
    McLaughlin, C.C., Wu, X.C., Jemal, A., Martin, H.J., Roche, L.M., Chen, V.W., 2005. Incidence of noncutaneous melanomas in the U.S. Cancer 103, 1000-1007.
    Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A., Lopez-Bigas, N., 2016. OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol. 17, 128.
    Newell, F., Kong, Y., Wilmott, J.S., Johansson, P.A., Ferguson, P.M., Cui, C., Li, Z., Kazakoff, S.H., Burke, H., Dodds, T.J., et al., 2019. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat. Commun. 10, 3163.
    Newell, F., Wilmott, J.S., Johansson, P.A., Nones, K., Addala, V., Mukhopadhyay, P., Broit, N., Amato, C.M., Van Gulick, R., Kazakoff, S.H., et al., 2020. Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nat. Commun. 11, 5259.
    Newell, F., Johansson, P.A., Wilmott, J.S., Nones, K., Lakis, V., Pritchard, A.L., Lo, S.N., Rawson, R.V., Kazakoff, S.H., Colebatch, A.J., et al., 2022. Comparative genomics provides etiologic and biological insight into melanoma subtypes. Cancer Discov. 12, 2856-2879.
    Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L.B., Martin, S., Wedge, D.C., et al., 2016. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47-54.
    Quinton, R.J., DiDomizio, A., Vittoria, M.A., Kotynkova, K., Ticas, C.J., Patel, S., Koga, Y., Vakhshoorzadeh, J., Hermance, N., Kuroda, T.S., et al., 2021. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590, 492-497.
    Rheinbay, E., Nielsen, M.M., Abascal, F., Wala, J.A., Shapira, O., Tiao, G., Hornshoej, H., Hess, J.M., Juul, R.I., Lin, Z., et al., 2020. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102-111.
    Schadendorf, D., Ascierto, P.A., Haanen, J., Espinosa, E., Demidov, L., Garbe, C., Guida, M., Lorigan, P., Chiarion-Sileni, V., Gogas, H., et al., 2019. Safety and efficacy of nivolumab in challenging subgroups with advanced melanoma who progressed on or after ipilimumab treatment: a single-arm, open-label, phase ii study (CheckMate 172). Eur. J. Cancer 121, 144-153.
    Shang, Q., Du, H., Wu, X., Guo, Q., Zhang, F., Gong, Z., Jiao, T., Guo, J., Kong, Y., 2022. FMRP ligand circZNF609 destabilizes RAC1 mRNA to reduce metastasis in acral melanoma and cutaneous melanoma. J. Exp. Clin. Cancer Res. 41, 170.
    Shi, Q., Liu, L., Chen, J., Zhang, W., Guo, W., Wang, X., Wang, H., Guo, S., Yue, Q., Ma, J., et al., 2022. Integrative genomic profiling uncovers therapeutic targets of acral melanoma in Asian populations. Clin. Cancer Res. 28, 2690-2703.
    Shoushtari, A.N., Munhoz, R.R., Kuk, D., Ott, P.A., Johnson, D.B., Tsai, K.K., Rapisuwon, S., Eroglu, Z., Sullivan, R.J., Luke, J.J., et al., 2016. The efficacy of anti-PD-1 agents in acral and mucosal melanoma. Cancer 122, 3354-3362.
    Si, L., Zhang, X., Shu, Y., Pan, H., Wu, D., Liu, J., Lou, F., Mao, L., Wang, X., Wen, X., et al., 2019. A phase Ib study of pembrolizumab as second-line therapy for Chinese patients with advanced or metastatic melanoma (KEYNOTE-151). Transl. Oncol. 12, 828-835.
    Steele, C.D., Tarabichi, M., Oukrif, D., Webster, A.P., Ye, H., Fittall, M., Lombard, P., Martincorena, I., Tarpey, P.S., Collord, G., et al., 2019. Undifferentiated sarcomas develop through distinct evolutionary pathways. Cancer Cell 35, 441-456.
    Tang, B., Chi, Z., Chen, Y., Liu, X., Wu, D., Chen, J., Song, X., Wang, W., Dong, L., Song, H., et al., 2020. Safety, efficacy, and biomarker analysis of toripalimab in previously treated advanced melanoma: results of the POLARI-01 multicenter phase II trial. Clin. Cancer Res. 26, 4250-4259.
    Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J., Prins, P., 2015. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032-2034.
    Wang, M., Banik, I., Shain, A.H., Yeh, I., Bastian, B.C., 2022. Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Med. 14, 65.
    Wang, M., Fukushima, S., Sheen, Y.S., Ramelyte, E., Cruz-Pacheco, N., Shi, C., Liu, S., Banik, I., Aquino, J.D., Sangueza Acosta, M., et al., 2024. The genetic evolution of acral melanoma. Nat. Commun. 15, 6146.
    Zack, T.I., Schumacher, S.E., Carter, S.L., Cherniack, A.D., Saksena, G., Tabak, B., Lawrence, M.S., Zhsng, C.Z., Wala, J., Mermel, C.H., et al., 2013. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134-1140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return