Al-Saghir, M.G., 2016. Taxonomy and phylogeny in Triticeae: a historical review and current status. Adv. Plants Agric. Res. 3, 139-143.
|
Alekseyev, M.A., Pevzner, P.A., 2009. Breakpoint graphs and ancestral genome reconstructions. Genome Res. 19, 943-957.
|
Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., Ciren, D., et al., 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145-161.
|
Anderson, J.A., Ogihara, Y., Sorrells, M.E., Tanksley, S.D., 1992. Development of a chromosomal arm map for wheat based on RFLP markers. Theor. Appl. Genet. 83, 1035-1043.
|
Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C.J., Stein, N., Choulet, F., Distelfeld, A., et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.
|
Avdeyev, P., Jiang, S., Aganezov, S., Hu, F., Alekseyev, M.A., 2016. Reconstruction of Ancestral Genomes in Presence of Gene Gain and Loss. J. Comput. Biol. 23, 150-164.
|
Avni, R., Nave, M., Barad, O., Baruch, K., Twardziok, S.O., Gundlach, H., Hale, I., Mascher, M., Spannagl, M., Wiebe, K., et al., 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93-97.
|
Ayala, F.J., Coluzzi, M., 2005. Chromosome speciation: humans, drosophila, and mosquitoes. Proc. Natl. Acad. Sci. U. S. A. 102, 6535-6542.
|
Cer, R.Z., Donohue, D.E., Mudunuri, U.S., Temiz, N.A., Loss, M.A., Starner, N.J., Halusa, G.N., Volfovsky, N., Yi, M., Luke, B.T., Bacolla, A., Collins, J.R., Stephens, R.M., 2013. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 41, D94-D100.
|
Chen, P.D., Qi, L.L., Zhou, B., Zhang, S.Z., Liu, D.J., 1995. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet. 91, 1125-1128.
|
Chen, Y., Song, W., Xie, X., Wang, Z., Guan, P., Peng, H., Jiao, Y., Ni, Z., Sun, Q., Guo., W., 2020. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in Triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694–1708.
|
Daron, J., Glover, N., Pingault, L., Theil, S., Jamilloux, V., Paux, E., Barbe, V., Mangenot, S., Alberti, A., Wincker, P., Quesneville, H., Feuillet, C., Choulet, F., 2014. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol. 15, 546.
|
Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojc, P., Xie, D.X., Gale, M.D., 1993. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673-680.
|
Devos, K.M., Dubcovsky, J., Dvorak, J., Chinoy, C.N., Gale, M.D., 1995. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 91, 282-288.
|
Dvorak, J., Wang, L., Zhu, T., Jorgensen, C.M., Luo, M.C., Deal, K.R., Gu, Y.Q., Gill, B.S., Distelfeld, A., Devos, K.M., et al., 2018. Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theor. Appl. Genet. 131, 2451-2462.
|
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.
|
Eilam, T., Anikster, Y., Millet, E., Manisterski, J., Sagi-Assif, O., Feldman, M., 2007. Genome size and genome evolution in diploid Triticeae species. Genome 50, 1029-1037.
|
Emms, D.M., Kelly, S., 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238.
|
Faria, R., Navarro, A., 2010. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25, 660-669.
|
Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., Gill, B.S., 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59-87.
|
Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., et al., 2011. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178-D1186.
|
Guo, J., Cao, K., Deng, C., Li, Y., Zhu, G., Fang, W., Chen, C., Wang, X., Wu, J., Guan, L., et al., 2020. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biol. 21, 258.
|
Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., et al., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494-1512.
|
He, Z., Ji, R., Havlickova, L., Wang, L., Li, Y., Lee, H.T., Song, J., Koh, C., Yang, J., Zhang, M., et al., 2021. Genome structural evolution in Brassica crops. Nat. Plants 7, 757-765.
|
Hernandez, P., Martis, M., Dorado, G., Pfeifer, M., Galvez, S., Schaaf, S., Jouve, N., Simkova, H., Valarik, M., Dolezel, J., et al., 2012. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 69, 377-386.
|
Jorgensen, C., Luo, M.C., Ramasamy, R., Dawson, M., Gill, B.S., Korol, A.B., Distelfeld, A., Dvorak, J., 2017. A high-density genetic map of wild emmer wheat from the karaca dag region provides new evidence on the structure and evolution of wheat chromosomes. Front. Plant Sci. 8, 1798.
|
Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
|
Kim, W., Johnson, J.W., Baenziger, P.S., Lukaszewski, A.J., Gaines, C.S., 2004. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 44, 1254-1258.
|
Kim, J., Farre, M., Auvil, L., Capitanu, B., Larkin, D.M., Ma, J., Lewin, H.A., 2017. Reconstruction and evolutionary history of eutherian chromosomes. Proc. Natl. Acad. Sci. U. S. A. 114, E5379-E5388.
|
King, I.P., Purdie, K.A., Liu, C.J., Reader, S.M., Pittaway, T.S., Orford, S.E., Miller, T.E., 1994. Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome 37, 882-887.
|
Li, B., Choulet, F., Heng, Y., Hao, W., Paux, E., Liu, Z., Yue, W., Jin, W., Feuillet, C., Zhang, X., 2013. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J. 73, 952-965.
|
Li, W., Challa, G.S., Zhu, H., Wei, W., 2016. Recurrence of chromosome rearrangements and reuse of DNA breakpoints in the evolution of the Triticeae genomes. G3. 6, 3837-3847.
|
Li, G., Wang, L., Yang, J., He, H., Jin, H., Li, X., Ren, T., Ren, Z., Li, F., Han, X., et al., 2021. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 53, 574-584.
|
Li, L.F., Zhang, Z.B., Wang, Z.H., Li, N., Sha, Y., Wang, X.F., Ding, N., Li, Y., Zhao, J., Wu, Y., et al., 2022. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant. 15, 488-503.
|
Ling, H.Q., Ma, B., Shi, X., Liu, H., Dong, L., Sun, H., Cao, Y., Gao, Q., Zheng, S., Li, Y., et al., 2018. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557, 424-428.
|
Liu, C.J., Atkinson, M.D., Chinoy, C.N., Devos, K.M., Gale, M.D., 1992. Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor. Appl. Genet. 83, 305-312.
|
Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.A., Zhang, H., Liu, Z., Shi, M., et al., 2020. Pan-genome of wild and cultivated soybeans. Cell 182, 162-176.
|
Love A., 1984. Conspectus of the Triticeae. Feddes Repertorium 95, 425-521.
|
LU, B.R., ELLSTRAND, N., 2014. World food security and the tribe Triticeae (Poaceae): Genetic resources of cultivated, wild, and weedy taxa for crop improvement. J. Syst. Evol. 52, 661-666.
|
Luo, M.C., Gu, Y.Q., Puiu, D., Wang, H., Twardziok, S.O., Deal, K.R., Huo, N., Zhu, T., Wang, L., Wang, Y., et al., 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498-502.
|
Ma, J., Stiller, J., Berkman, P.J., Wei, Y., Rogers, J., Feuillet, C., Dolezel, J., Mayer, K.F., Eversole, K., Zheng, Y.L., et al., 2013. Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). PLoS One 8, e79329.
|
Ma, J., Stiller, J., Wei, Y., Zheng, Y.L., Devos, K.M., Dolezel, J., Liu, C., 2014. Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype "Chinese Spring" revealed from chromosome shotgun sequence data. Genome Biol. Evol. 6, 3039-3048.
|
Maccaferri, M., Harris, N.S., Twardziok, S.O., Pasam, R.K., Gundlach, H., Spannagl, M., Ormanbekova, D., Lux, T., Prade, V.M., Milner, S.G., et al., 2019. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885-895.
|
Martis, M.M., Zhou, R., Haseneyer, G., Schmutzer, T., Vrana, J., Kubalakova, M., Konig, S., Kugler, K.G., Scholz, U., Hackauf, B., et al., 2013. Reticulate evolution of the rye genome. Plant Cell 25, 3685-3698.
|
Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S.O., Wicker, T., Radchuk, V., Dockter, C., Hedley, P.E., Russell, J., et al., 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427-433.
|
Mascher, M., Wicker, T., Jenkins, J., Plott, C., Lux, T., Koh, C.S., Ens, J., Gundlach, H., Boston, L.B., Tulpova, Z., et al., 2021. Long-read sequence assembly: a technical evaluation in barley. Plant Cell 33, 1888-1906.
|
Miftahudin, Ross, K., Ma, X.F., Mahmoud, A.A., Layton, J., Milla, M.A., Chikmawati, T., Ramalingam, J., Feril, O., Pathan, M.S., et al., 2004. Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168, 651-663.
|
Monat, C., Padmarasu, S., Lux, T., Wicker, T., Gundlach, H., Himmelbach, A., Ens, J., Li, C., Muehlbauer, G.J., Schulman, A.H., et al., 2019. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284.
|
Murat, F., Pont, C., Salse, J., 2014. Paleogenomics in Triticeae for translational research. Curr. Plant Biol. 1, 34-39.
|
Murat, F., Armero, A., Pont, C., Klopp, C., Salse, J., 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 49, 490-496.
|
Naranjo, T., Roca, A., Goicoechea, P.G., Giraldez, R.A.J.G., 1987. Arm homoeology of wheat and rye chromosomes. Genome 29, 873-882.
|
Navratilova, P., Toegelova, H., Tulpova, Z., Kuo, Y.T., Stein, N., Dolezel, J., Houben, A., Simkova, H., Mascher, M., 2022. Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnol. J. 20, 1373-1386.
|
Nelson, J.C., Sorrells, M.E., Van Deynze, A.E., Lu, Y.H., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D., Anderson, J.A., 1995. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141, 721-731.
|
Okonechnikov, K., Golosova, O., Fursov, M., UGENE team, 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166-1167.
|
Perumal, S., Koh, C.S., Jin, L., Buchwaldt, M., Higgins, E.E., Zheng, C., Sankoff, D., Robinson, S.J., Kagale, S., Navabi, Z.K., et al., 2020. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral brassica genome. Nat. Plants 6, 929-941.
|
Rabanus-Wallace, M.T., Hackauf, B., Mascher, M., Lux, T., Wicker, T., Gundlach, H., Baez, M., Houben, A., Mayer, K.F.X., Guo, L., et al., 2021. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 53, 564-573.
|
Raymond, O., Gouzy, J., Just, J., Badouin, H., Verdenaud, M., Lemainque, A., Vergne, P., Moja, S., Choisne, N., Pont, C., et al., 2018. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 50, 772-777.
|
Rieseberg, L.H., Livingstone, K., 2003. Chromosomal speciation in primates. Science 300, 267-268.
|
Ruban, A.S., Badaeva, E.D., 2018. Evolution of the S-genomes in Triticum-Aegilops alliance: Evidences from chromosome analysis. Front. Plant Sci. 9, 1756.
|
Salse, J., 2012. In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. Curr. Opin. Plant Biol. 15, 122-130.
|
Sela, I., Ashkenazy, H., Katoh, K., Pupko, T., 2015. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 43, W7-W14.
|
Sharma, D., Knott, D.R., 1966. The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8,137-143.
|
Soltis, P.S., Marchant, D.B., Van de Peer, Y., Soltis, D.E., 2015. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 35, 119-125.
|
Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
|
Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612.
|
Van de Peer, Y., Mizrachi, E., Marchal, K., 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411-424.
|
Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M.T., Brinton, J., Ramirez-Gonzalez, R.H., Kolodziej, M.C., Delorean, E., Thambugala, D., et al., 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277-283.
|
Wang, R.R.C., Lu, B., 2014. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J. Syst. Evol. 52, 697-705.
|
Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., et al., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49.
|
Wang, X., Wang, J., Jin, D., Guo, H., Lee, T.H., Liu, T., Paterson Andrew, H., 2015. Genome alignment spanning major poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events. Mol. Plant. 8, 885-898.
|
Wang, J., Sun, P., Li, Y., Liu, Y., Yu, J., Ma, X., Sun, S., Yang, N., Xia, R., Lei, T., et al., 2017. Hierarchically aligning 10 legume genomes establishes a family-level genomics platform. Plant Physiol. 174, 284-300.
|
Wang, H., Sun, S., Ge, W., Zhao, L., Hou, B., Wang, K., Lyu, Z., Chen, L., Xu, S., Guo, J., et al., 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435.
|
Wang, X., Hu, Y., He, W., Yu, K., Zhang, C., Li, Y., Yang, W., Sun, J., Li, X., Zheng, F., Zhou, S., Kong, L., Ling, H., Zhao, S., Liu, D., Zhang, A., 2022. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation. Plant Commun. 3, 100345.
|
Wendel, J.F., Jackson, S.A., Meyers, B.C., Wing, R.A., 2016. Evolution of plant genome architecture. Genome Biol. 17, 37.
|
Wu, S., Shamimuzzaman, M., Sun, H., Salse, J., Sui, X., Wilder, A., Wu, Z., Levi, A., Xu, Y., Ling, K.S., et al., 2017. The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring-spot virus resistance locus. Plant J. 92, 963-975.
|
Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591.
|
Yang, Y., Cui, L., Lu, Z., Li, G., Yang, Z., Zhao, G., Kong, C., Li, D., Chen, Y., Xie, Z., Chen, Z., Zhang, L., Xia, C., Liu, X., Jia, J., Kong, X., 2023. Genome sequencing of Sitopsis species provides insights into their contribution to the B subgenome of bread wheat. Plant Commun. 4, 100567.
|
Zhao, C., Cui, F., Wang, X., Shan, S., Li, X., Bao, Y., Wang, H., 2012. Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crop. Res. 127, 79-84.
|
Zhao, J., Xie, Y., Kong, C., Ku, Z., Jia, H., Ma, Z., Zhang, Y., Cui, D., Ru, Z., Wang, Y., Appels, R., Jia, J., Zhang, X., 2023. Centromere repositioning and shifts in wheat evolution. Plant Commun. 4,00556.
|
Zhao, G., Zou, C., Li, K., Wang, K., Li, T., Gao, L., Zhang, X., Wang, H., Yang, Z., Liu, X., et al., 2017. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 3, 946-955.
|
Zhou, Y., Bai, S., Li, H., Sun, G., Zhang, D., Ma, F., Zhao, X., Nie, F., Li, J., Chen, L., et al., 2021. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774-786.
|