Aroca, R., Porcel, R., Ruiz-Lozano, J.M., 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol. 173, 808-816.
|
Auge, R.M., Toler, H.D., Saxton, A.M., 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza 25, 13-24.
|
Azcon-G de Aguilar, C., Azcon, R., Barea, J. M., 1979. Endomycorrhizal fungi and Rhizobium as biological fertilisers for Medicago sativa in normal cultivation. Nature 279, 325-327.
|
Bravo, A., Brands, M., Wewer, V., Dormann, P., Harrison, M.J., 2017. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol. 214, 1631-1645.
|
Bukowski, R., Guo, X.S., Lu, Y.L., Zou, C., He, B., Rong, Z.Q., Wang, B., Xu, D.W., Yang, B.C., Xie, C.X., et al., 2018. Construction of the third-generation Zea mays haplotype map. Gigascience 7, 1-12.
|
Butcher, K.W.A.F., de Sutter, T., Chatterjee, A., Harmon, J., 2016. Soil salinity: a threat to global food security. Agron. J. 108, 2189-2200.
|
Cao, Y.B., Liang, X.Y., Yin, P., Zhang, M., Jiang, C.F., 2019. A domestication-associated reduction in K+ -preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytol. 222, 301-317.
|
Cao, Y.B., Song, H.F., Zhang, L.Y., 2022. New insight into plant saline-alkali tolerance mechanisms and application to breeding. Int. J. Mol. Sci. 23, 16048.
|
Cao, Y.B., Zhang, M., Liang, X.Y., Li, F.R., Shi, Y.L., Yang, X.H., Jiang, C.F., 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat. Commun. 11, 186.
|
Chandrasekaran, M., Boughattas, S., Hu, S., Oh, S.H., Sa, T.A., 2014. Meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24, 611-625.
|
Dai, H.L., Zhang, X.W., Zhao, B.Y., Shi, J.C., Zhang, C., Wang, G., Yu, N., Wang, E.T., 2022. Colonization of mutualistic mycorrhizal and parasitic blast fungi requires OsRAM2-regulated fatty acid biosynthesis in rice. Mol. Plant microbe interact. 35, 178-186.
|
Estrada, B., Beltran-Hermoso, M., Palenzuela, J., Iwase, K., Ruiz-Lozano, J.M., Barea, J., Oehl, F., 2013. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J. Arid Environ. 97, 170-175.
|
Evelin, H., Devi, T.S., Gupta, S., Kapoor, R., 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci. 10, 470.
|
Evelin, H., Giri, B., Kapoor, R., 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl stressed Trigonella foenum-graecum. Mycorrhiza 22, 203-217.
|
Gidda, S.K., Shockey, J.M., Rothstein, S.J., Dyer, J.M., Mullen, R.T., 2009. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol. Biochem. 47, 867-879.
|
Glassop, D., Smith, S.E., Smith, F.W., 2005. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222, 688-698.
|
Guo, R., Shi, L.X., Yan, C.R., Zhong, X.L., Gu, F.X., Liu, Q., Xia, X., Li, H.R., 2017. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol. 17, 41.
|
Hui, J., An, X., Li, Z.B., Neuhauser, B., Ludewig, U., Wu, X.N., Schulze, W.X., Chen, F.J., Feng, G., Lambers, H., et al., 2022. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. Plant Cell 34, 4066-4087.
|
Ismail, A.M., Horie, T., 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 68, 405-434.
|
Jiang, Y.N., Wang, W.X., Xie, Q.J., Liu, N., Liu, L.X., Wang, D.P., Zhang, X.W., Yang, C., Chen, X.Y., Tang, D.Z., et al., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175.
|
Jung, S., Hutsch, B.W., Schubert, S., 2017. Salt stress reduces kernel number of corn by inhibiting plasma membrane H+-ATPase activity. Plant Physiol. Biochem. 113, 198-207.
|
Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360.
|
Li, J.W., Zhu, Q.L., Jiao, F.C., Yan, Z.W., Zhang, H.Y., Zhang, Y.M., Ding, Z.H., Mu, C.H., Liu, X., Li, Y., et al., 2023. Research progress on the mechanism of salt tolerance in maize: a classic field that needs new efforts. Plants 12, 2356.
|
Liu, Y.N., Liu, C.C., Zhu, A.Q., Niu, K.X., Guo, R., Tian, L., Wu, Y.N., Sun, B., Wang, B., 2022. OsRAM2 function in lipid biosynthesis is required for arbuscular mycorrhizal symbiosis in rice. Mol. Plant Microbe Interact. 35, 187-199.
|
Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol. 15, 550.
|
Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G.V., Breakspear, A., Oldroyd, G.E.D., Eastmond, P.J., 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175-1178.
|
McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L., Swan, J.A., 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495-501.
|
Moulin, S., 2022. Get connected to the fungal network for improved transfer of nitrogen: the role of ZmAMT3;1 in ammonium transport in maize-arbuscular mycorrhizal symbiosis. Plant Cell 34, 3509-3511.
|
Munns, R., Passioura, J.B., Colmer, T.D., Byrt, C.S., 2020. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 225, 1091-1096.
|
Munns, R., and Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651-681.
|
Nadal, M., Sawers, R., Naseem, S., Bassin, B., Kulicke, C., Sharman, A., An, G., An, K., Ahern, K.R., Romag, A., et al., 2017. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nat. Plants 3, 17073.
|
Nagy, R., Vasconcelos, M.J.V., Zhao, S., McElver, J., Bruce, W., Amrhein, N., Raghothama, K.G., Bucher, M., 2006. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol. 8, 186-197.
|
Pfeifer, B., Wittelsburger, U., Ramos-Onsins, S.E., Lercher, M.J., 2014. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929-1936.
|
Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55, 158–161.
|
Porcel, R., Aroca, R., Azcon, R., Ruiz-Lozano, J.M., 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26, 673-684.
|
Porcel, R., Redondo-Gomez, S., Mateos-Naranjo, E., Aroca, R., Garcia, R., Ruiz-Lozano, J.M., 2015. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 185, 75-83.
|
Ramirez-Flores, M.R., Perez-Limon, S., Li, M., Barrales-Gamez, B., Albinsky, D., Paszkowski, U., Olalde-Portugal, V., Sawers, R.J.H., 2020. The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. eLife 9, e61701.
|
Ruiz-Lozano, J.M., Porcel, R., Azcon, C., Aroca, R., 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J. Exp. Bot. 63, 4033-4044.
|
Sheng, M., Tang, M., Chen, H., Yang, B.W., Zhang, F.F., Huang, Y.H., 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18, 287-296.
|
Varet, H., Brillet-Gueguen, L., Coppee, J-Y., Dillies, M-A., 2016. SARTools: A DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-seq data. PLoS One 11, e0157022.
|
Wang, D.Y., Ni, Y., Xie, K.L., Li, Y.H., Wu, W.X., Shan, H.C., Cheng, B.J., Li, X.Y., 2024. Aquaporin ZmTIP2;3 promotes drought resistance of maize through symbiosis with arbuscular mycorrhizal fungi. Int. J. Mol. Sci. 25, 4205.
|
Wang, E.T., Schornack, S., Marsh, J.F., Gobbato, E., Schwessinger, B., Eastmond, P., Schultze, M., Kamoun, S., Oldroyd, G.E.D., 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22, 2242-2246.
|
Wang, M.Q., Wang, Y.F., Zhang, Y.F., Li, C.X., Gong, S.C., Yan, S.Q., Li, G.L., Hu, G.H., Ren, H.L., Yang, J.F., et al., 2019. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes Genomics 41, 781-801.
|
Wu, N., Li, Z., Liu, H.G., Tang, M., 2015. Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress. Acta. Physiol. Plant 37, 183-197.
|
Xie, K., Wu, S.W., Li, Z.W., Zhou, Y., Zhang, D.F., Dong, Z.Y., An, X.L., Zhu, T.T., Zhang, S.M., Liu, S.S., et al., 2018. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theor. Appl. Genet. 131, 1363-1378.
|
Xing, L.J., Zhu, M., Luan, M.D., Zhang, M., Jin, L., Liu, Y.P., Zou, J.J., Wang, L., Xu, M.Y., 2022. miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS. Plant Physiol. 188, 608-623.
|
Yang, Z.R., Cao, Y.B., Shi, Y.T., Qin, F., Jiang, C.F., Yang, S.H., 2023. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture. Mol. Plant 16, 1496-1517.
|
Yu, H.M., Bai, F.X., Ji, C.Y., Fan, Z.Y., Luo, J.Y., Ouyang, B., Deng, X.X., Xiao, S.Y., Bisseling, T., Limpens, E., et al., 2023. Plant lysin motif extracellular proteins are required for arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U.S.A. 120, e2301884120.
|
Zhang, E.Y., Zhu, X.J., Wang, W.L., Sun, Y., Tian, X.M., Chen, Z.Y., Mou, X.S., Zhang, Y.L., Wei, Y.H., Fang, Z.X., et al., 2023. Metabolomics reveals the response of hydroprimed maize to mitigate the impact of soil salinization. Front. Plant Sci. 14, 1109460.
|
Zhang, L., Luo, H.B., Zhao, Y., Chen, X.Y., Huang, Y.M., Yan, S.S., Li, S.X., Liu, M.S., Huang, W., Zhang, X.L., et al., 2018a. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC Plant Biol. 18, 318.
|
Zhang, M., Cao, Y.B., Wang, Z.P., Wang, Z.Q., Shi, J.P., Liang, X.Y., Song, W.B., Chen, Q.J., Lai, J.S., Jiang, C.F., 2018b. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol. 217, 1161-1176.
|
Zhang, Q., Blaylock, L.A., Harrison, M.J., 2010. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22, 1483-1497.
|
Zhang, X., Cai, H.L., Lu, M., Wei, Q.Y., Xu, L.J., Bo, C., Ma, Q., Zhao, Y., Cheng, B.J., 2019. A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis. Plant Cell Rep. 38, 1563-1578.
|
Zhou, X.Y., Li, J.F., Wang, Y.Q., Liang, X.Y., Zhang, M., Lu, M.H., Guo, Y., Qin, F., Jiang, C.F., 2022. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytol. 236, 479-494.
|
Zhu, T.T., Wu, S.W., Zhang, D.F., Li, Z.W., Xie, K., An, X.L., Ma, B., Hou, Q.C., Dong, Z.Y., Tian, Y.H., et al., 2019. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. Theor. Appl. Genet. 132, 2137-2154.
|
Zorb, C., Geilfus, C-M., Dietz, K-J., 2019. Salinity and crop yield. Plant Biol. Suppl 1, 31-38.
|