9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 6
Jun.  2025
Turn off MathJax
Article Contents

High-quality genome of Firmiana hainanensis provides insights into the evolution of Malvaceae subfamilies and the mechanism of their wood density formation

doi: 10.1016/j.jgg.2024.12.009
Funds:

YSPTZX202139)

the Research Startup Funding from Hainan Institute of Zhejiang University (0202-6602-A12201) and the Distinguished Discipline Support Program of Zhejiang University (226-2024-00205, 226-2022-00100).

This research was supported by the National Key R&D Program of China (2022YFF1001400), postdoctoral innovative talents support program (517000-X92308), the specific research fund of The Innovation Platform for Academicians of Hainan Province (YSPTZX202154

  • Received Date: 2024-09-27
  • Accepted Date: 2024-12-10
  • Rev Recd Date: 2024-12-10
  • Available Online: 2025-07-11
  • Publish Date: 2024-12-19
  • The Malvaceae family, the most diverse family in the order Malvales, consists of nine subfamilies. Within the Firmiana genus of the Sterculioideae subfamily, most species are considered globally vulnerable, yet their genomes remain unexplored. Here, we present a chromosome-level genome assembly for a representative Firmiana species, F. hainanensis, 2n = 40, totaling 1536 Mb. Phylogenomic analysis shows that F. hainanensis and Durio zibethinus have the closest evolutionary relationship, with an estimated divergence time of approximately 21 millions of years ago (MYA) and distinct polyploidization events in their histories. Evolutionary trajectory analyses indicate that fissions and fusions may play a crucial role in chromosome number variation (2n = 14 to 2n = 96). Analysis of repetitive elements among Malvaceae reveals that the Tekay subfamily (belonging to the Gypsy group) contributes to variation in genome size (ranging from 324 Mb to 1620 Mb). Additionally, genes associated with P450, peroxidase, and microtubules, and thereby related to cell wall biosynthesis, are significantly contracted in F. hainanensis, potentially leading to its lower wood density relative to Hopea hainanensis. Overall, our study provides insights into the evolution of chromosome number, genome size, and the genetic basis of cell wall biosynthesis in Malvaceae species.
  • loading
  • Argout, X., Martin, G., Droc, G., Fouet, O., Labadie, K., Rivals, E., Aury, J.M., Lanaud, C., 2017. The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies. BMC Genomics 18, 730.
    Argout, X., Salse, J., Aury, J.M., Guiltinan, M.J., Droc, G., Gouzy, J., Allegre, M., Chaparro, C., Legavre, T., Maximova, S.N., et al., 2011. The genome of Theobroma cacao. Nat. Genet. 43, 101-108.
    Belton, J.M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., Dekker, J., 2012. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268-276.
    Bennetzen, J.L., 2002. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115, 29-36.
    Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59-60.
    Burge, C., Karlin, S., 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78-94.
    Chanderbali, A.S., Berger, B.A., Howarth, D.G., Soltis, D.E., Soltis, P.S., 2017. Evolution of floral diversity: genomics, genes and gamma. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20150509.
    Chen, S.F., Li, M.W., Jing, H.J., Zhou, R.C., Yang, G.L., Wu, W., Fan, Q., Liao, W.B., 2015. De Novo Transcriptome Assembly in Firmiana danxiaensis, a Tree Species Endemic to the Danxia Landform. PLoS ONE 10, e0139373.
    Dai, F., Chen, J., Zhang, Z., Liu, F., Li, J., Zhao, T., Hu, Y., Zhang, T., Fang, L., 2022. COTTONOMICS: a comprehensive cotton multi-omics database. Database (Oxford) 2022.
    Dejardin, A., Laurans, F., Arnaud, D., Breton, C., Pilate, G., Leple, J.C., 2010. Wood formation in Angiosperms. C. R. Biol. 333, 325-334.
    Du, J., Tian, Z., Hans, C.S., Laten, H.M., Cannon, S.B., Jackson, S.A., Shoemaker, R.C., Ma, J., 2010. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J. 63, 584-598.
    Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., Aiden, E.L., 2016. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst 3, 99-101.
    Ellinghaus, D., Kurtz, S., Willhoeft, U., 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18.
    Frahry, M.B., Sun, C., Chong, R.A., Mueller, R.L., 2015. Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders. J. Mol. Evol. 80, 120-129.
    Gao, Y., Wang, H., Liu, C., Chu, H., Dai, D., Song, S., Yu, L., Han, L., Fu, Y., Tian, B., et al., 2018. De novo genome assembly of the red silk cotton tree (Bombax ceiba). Gigascience 7, giy051.
    Gerstein, A.C., Otto, S.P., 2009. Ploidy and the causes of genomic evolution. J. Hered. 100, 571-581.
    Gou, M., Ran, X., Martin, D.W., Liu, C.J., 2018. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nat Plants 4, 299-310.
    Group, T.A.P., Chase, M.W., Christenhusz, M.J.M., Fay, M.F., Byng, J.W., Judd, W.S., Soltis, D.E., Mabberley, D.J., Sennikov, A.N., Soltis, P.S., et al., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20.
    Guigo, R., 1998. Assembling genes from predicted exons in linear time with dynamic programming. J. Comput. Biol. 5, 681-702.
    Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Jr., Hannick, L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., et al., 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654-5666.
    Han, M.V., Thomas, G.W., Lugo-Martinez, J., Hahn, M.W., 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987-1997.
    Hu, Y., Chen, J., Fang, L., Zhang, Z., Ma, W., Niu, Y., Ju, L., Deng, J., Zhao, T., Lian, J., et al., 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51, 739-748.
    Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., et al., 2012. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 40, D306-312.
    Islam, M.S., Saito, J.A., Emdad, E.M., Ahmed, B., Islam, M.M., Halim, A., Hossen, Q.M., Hossain, M.Z., Ahmed, R., Hossain, M.S., et al., 2017. Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants 3, 16223.
    Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., et al., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467.
    Kapusta, A., Suh, A., Feschotte, C., 2017. Dynamics of genome size evolution in birds and mammals. Proc. Natl. Acad. Sci. U. S. A. 114, E1460-E1469.
    Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066.
    Kidwell, M.G., 2002. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49-63.
    Kielbasa, S.M., Wan, R., Sato, K., Horton, P., Frith, M.C., 2011. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487-493.
    Korf, I., 2004. Gene finding in novel genomes. BMC Bioinformatics 5, 59.
    Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., et al., 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, D1202-1210.
    Le Gall, H., Philippe, F., Domon, J.M., Gillet, F., Pelloux, J., Rayon, C., 2015. Cell Wall Metabolism in Response to Abiotic Stress. Plants (Basel) 4, 112-166.
    Letunic, I., Bork, P., 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293-W296.
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    Li, K., Xu, P., Wang, J., Yi, X., Jiao, Y., 2023. Identification of errors in draft genome assemblies at single-nucleotide resolution for quality assessment and improvement. Nat. Commun. 14, 6556.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Genome Project Data Processing, S., 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.
    Li, L., Stoeckert, C.J., Jr., Roos, D.S., 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178-2189.
    Lipka, E., Herrmann, A., Mueller, S., 2015. Mechanisms of plant cell division. Wiley Interdiscip Rev Dev Biol 4, 391-405.
    Llorens, C., Futami, R., Covelli, L., Dominguez-Escriba, L., Viu, J.M., Tamarit, D., Aguilar-Rodriguez, J., Vicente-Ripolles, M., Fuster, G., Bernet, G.P., et al., 2011. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70-74.
    Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964.
    Lu, Q., Luo, W., 2022. The complete chloroplast genome of two Firmiana species and comparative analysis with other related species. Genetica 150, 395-405.
    Luo, L., Li, L., 2022. Molecular understanding of wood formation in trees. Forestry Research 2, 0-0.
    Luo, X., Chen, S., Zhang, Y., 2022. PlantRep: a database of plant repetitive elements. Plant Cell Rep. 41, 1163-1166.
    Lyu, H., He, Z., Wu, C.I., Shi, S., 2018. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol. 217, 428-438.
    Majoros, W.H., Pertea, M., Salzberg, S.L., 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878-2879.
    Marcais, G., Kingsford, C., 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764-770.
    Markov, A.V., Anisimov, V.A., Korotayev, A.V., 2010. Relationship Between Genome Size and Organismal Complexity in the Lineage Leading from Prokaryotes to Mammals. Paleontological Journal 44, 363-373.
    Nawrocki, E.P., Kolbe, D.L., Eddy, S.R., 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335-1337.
    Neale, D.B., Martinez-Garcia, P.J., De La Torre, A.R., Montanari, S., Wei, X.X., 2017. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. Annu. Rev. Plant Biol. 68, 457-483.
    Neumann, P., Novak, P., Hostakova, N., Macas, J., 2019. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 10, 1.
    Nowoshilow, S., Schloissnig, S., Fei, J.F., Dahl, A., Pang, A.W.C., Pippel, M., Winkler, S., Hastie, A.R., Young, G., Roscito, J.G., et al., 2018. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50-55.
    Nystedt, B., Street, N.R., Wetterbom, A., Zuccolo, A., Lin, Y.C., Scofield, D.G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., et al., 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579-584.
    Otto, S.P., Whitton, J., 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401-437.
    Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R.L., Lee, Y., Zheng, L., et al., 2007. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35, D883-887.
    Pasquesi, G.I.M., Adams, R.H., Card, D.C., Schield, D.R., Corbin, A.B., Perry, B.W., Reyes-Velasco, J., Ruggiero, R.P., Vandewege, M.W., Shortt, J.A., et al., 2018. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat. Commun. 9, 2774.
    Pellicer, J., Hidalgo, O., Dodsworth, S., Leitch, I.J., 2018. Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes (Basel) 9, 88.
    Pereira, V., 2004. Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol. 5, R79.
    Phillips, O.L., Sullivan, M.J.P., Baker, T.R., Monteagudo Mendoza, A., Vargas, P.N., Vasquez, R., 2019. Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surv Geophys 40, 913-935.
    Rhie, A., Walenz, B.P., Koren, S., Phillippy, A.M., 2020. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245.
    Saranpaa, P., 2003. Wood density and growth. Wood quality and its biological basis, pp.87-117.
    Shao, L., Jin, S., Chen, J., Yang, G., Fan, R., Zhang, Z., Deng, Q., Han, J., Ma, X., Dong, Z., et al., 2024. High-quality genomes of Bombax ceiba and Ceiba pentandra provide insights into the evolution of Malvaceae species and differences in their natural fiber development. Plant Commun 5, 100832.
    Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
    Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435-439.
    Stortenbeker, N., Bemer, M., 2019. The SAUR gene family: the plant's toolbox for adaptation of growth and development. J. Exp. Bot. 70, 17-27.
    Su, W., Jing, Y., Lin, S., Yue, Z., Yang, X., Xu, J., Wu, J., Zhang, Z., Xia, R., Zhu, J., et al., 2021. Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proc. Natl. Acad. Sci. U. S. A. 118, e2101767118.
    Sun, C., Lopez Arriaza, J.R., Mueller, R.L., 2012. Slow DNA loss in the gigantic genomes of salamanders. Genome Biol. Evol. 4, 1340-1348.
    Sun, P., Lu, Z., Wang, Z., Wang, S., Zhao, K., Mei, D., Yang, J., Yang, Y., Renner, S.S., Liu, J., 2024. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc. Natl. Acad. Sci. U. S. A. 121, e2313921121.
    Tarailo-Graovac, M., Chen, N., 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4, 4 10 11-14 10 14.
    Teh, B.T., Lim, K., Yong, C.H., Ng, C.C.Y., Rao, S.R., Rajasegaran, V., Lim, W.K., Ong, C.K., Chan, K., Cheng, V.K.Y., et al., 2017. The draft genome of tropical fruit durian (Durio zibethinus). Nat. Genet. 49, 1633-1641.
    Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., et al., 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604.
    van de Lagemaat, L.N., Gagnier, L., Medstrand, P., Mager, D.L., 2005. Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res. 15, 1243-1249.
    Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
    Vinogradov, A.E., 1999. Intron-genome size relationship on a large evolutionary scale. J. Mol. Evol. 49, 376-384.
    Wang, D., Fan, W., Guo, X., Wu, K., Zhou, S., Chen, Z., Li, D., Wang, K., Zhu, Y., Zhou, Y., 2020. MaGenDB: a functional genomics hub for Malvaceae plants. Nucleic Acids Res. 48, D1076-D1084.
    Wang, J., Yuan, J., Yu, J., Meng, F., Sun, P., Li, Y., Yang, N., Wang, Z., Pan, Y., Ge, W., et al., 2019. Recursive Paleohexaploidization Shaped the Durian Genome. Plant Physiol. 179, 209-219.
    Wang, K., Guan, B., Guo, W., Zhou, B., Hu, Y., Zhu, Y., Zhang, T., 2008. Completely distinguishing individual A-genome chromosomes and their karyotyping analysis by multiple bacterial artificial chromosome - fluorescence in situ hybridization. Genetics 178, 1117-1122.
    Wang, S., Liang, H., Wang, H., Li, L., Xu, Y., Liu, Y., Liu, M., Wei, J., Ma, T., Le, C., et al., 2022. The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. Plant Biotechnol. J. 20, 538-553.
    Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., et al., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49.
    Wen, X., Chen, Z., Yang, Z., Wang, M., Jin, S., Wang, G., Zhang, L., Wang, L., Li, J., Saeed, S., et al., 2023. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Sci China Life Sci 66, 2214-2256.
    Wendel, J.F., Jackson, S.A., Meyers, B.C., Wing, R.A., 2016. Evolution of plant genome architecture. Genome Biol. 17, 37.
    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., et al., 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973-982.
    Xu, Z., Wang, H., 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265-268.
    Yang, Y., Liu, X., Shi, X., Ma, J., Zeng, X., Zhu, Z., Li, F., Zhou, M., Guo, X., Liu, X., 2022. A High-Quality, Chromosome-Level Genome Provides Insights Into Determinate Flowering Time and Color of Cotton Rose (Hibiscus mutabilis). Front Plant Sci 13, 818206.
    Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591.
    Zhang, J., Zhang, X., Tang, H., Zhang, Q., Hua, X., Ma, X., Zhu, F., Jones, T., Zhu, X., Bowers, J., et al., 2018. Publisher Correction: Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1754.
    Zhang, L., Ma, X., Zhang, X., Xu, Y., Ibrahim, A.K., Yao, J., Huang, H., Chen, S., Liao, Z., Zhang, Q., et al., 2021. Reference genomes of the two cultivated jute species. Plant Biotechnol. J. 19, 2235-2248.
    Zhang, S.J., Liu, L., Yang, R., Wang, X., 2020. Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae. Genomics Proteomics Bioinformatics 18, 321-332.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return