9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

A rare KLHDC4 variant Glu510Lys is associated with genetic susceptibility and promotes tumor metastasis in nasopharyngeal carcinoma

doi: 10.1016/j.jgg.2024.12.008
Funds:

This work was supported by the National Natural Science Foundation (82261160657, 82102490, and 81572781), the Guangdong Basic and Applied Basic Research Foundation (2024A1515013061), the Sci-Tech Project Foundation of Guangzhou City (2023A04J2141), Chang Jiang Scholars Program (J.-X.B.), the Hong Kong Research Grant Council (RGC) Theme-based Research Scheme Funds (T12-703/22-R and T12-703/23-N).

  • Received Date: 2024-09-05
  • Accepted Date: 2024-12-09
  • Rev Recd Date: 2024-12-09
  • Available Online: 2025-07-11
  • Publish Date: 2024-12-18
  • Various genetic association studies have identified numerous single nucleotide polymorphisms (SNPs) associated with nasopharyngeal carcinoma (NPC) risk. However, these studies have predominantly focused on common variants, leaving the contribution of rare variants to the “missing heritability” largely unexplored. Here, we integrate genotyping data from 3925 NPC cases and 15,048 healthy controls to identify a rare SNP, rs141121474, resulting in a Glu510Lys mutation in KLHDC4 gene linked to increased NPC risk. Subsequent analyses reveal that KLHDC4 is highly expressed in NPC and correlates with poorer prognosis. Functional characterizations demonstrate that KLHDC4 acts as an oncogene in NPC cells, enhancing their migratory and metastatic capabilities, with these effects being further augmented by the Glu510Lys mutation. Mechanistically, the Glu510Lys mutant exhibits increased interaction with Vimentin compared to the wild-type KLHDC4 (KLHDC4-WT), leading to elevated Vimentin protein stability and modulation of the epithelial-mesenchymal transition process, thereby promoting tumor metastasis. Moreover, Vimentin knockdown significantly mitigates the oncogenic effects induced by overexpression of both KLHDC4-WT and the Glu510Lys variant. Collectively, our findings highlight the critical role of the rare KLHDC4 variant rs141121474 in NPC progression and propose its potential as a diagnostic and therapeutic target for NPC patients.
  • loading
  • Abdellaoui, A., Yengo, L., Verweij, K.J.H., Visscher, P.M., 2023. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179-194.
    Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A.J., Bambrick, J., et al., 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493-500.
    Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169.
    Bakir, B., Chiarella, A.M., Pitarresi, J.R., Rustgi, A.K., 2020. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30, 764-776.
    Bei, J.-X., Jia, W.-H., Zeng, Y.-X., 2012. Familial and large-scale case-control studies identify genes associated with nasopharyngeal carcinoma. Semin. Cancer Biol. 22, 96-106.
    Bei, J.-X., Li, Y., Jia, W.-H., Feng, B.-J., Zhou, G., Chen, L.-Z., Feng, Q.-S., Low, H.-Q., Zhang, H., He, F., et al., 2010. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat. Genet. 42, 599-603.
    Bei, J.-X., Su, W.-H., Ng, C.-C., Yu, K., Chin, Y.-M., Lou, P.-J., Hsu, W.-L., McKay, J.D., Chen, C.-J., Chang, Y.-S., et al., 2016. A GWAS meta-analysis and replication study identifies a novel locus within CLPTM1L/TERT associated with nasopharyngeal carcinoma in individuals of Chinese ancestry. Cancer Epidemiol. Biomarkers Prev. 25, 188-192.
    Chen, H., Lee, J.M., Wang, Y., Huang, D.P., Ambinder, R.F., Hayward, S.D., 1999. The Epstein-Barr virus latency BamHI-Q promoter is positively regulated by STATs and Zta interference with JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc. Natl. Acad. Sci. U. S. A. 96, 9339-9344.
    Chen, S., Francioli, L.C., Goodrich, J.K., Collins, R.L., Kanai, M., Wang, Q., Alfoldi, J., Watts, N.A., Vittal, C., Gauthier, L.D., et al., 2024. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92-100.
    Chen, T., Zheng, W., Chen, J., Lin, S., Zou, Z., Li, X., Tan, Z., 2020. Systematic analysis of survival-associated alternative splicing signatures in clear cell renal cell carcinoma. J. Cell Biochem. 121, 4074-4084.
    Chen, Y.-P., Chan, A.T.C., Quynh-Thu, L., Blanchard, P., Sun, Y., Ma, J., 2019. Nasopharyngeal carcinoma. Lancet 394, 64-80.
    Chen, Y.-P., Ismaila, N., Chua, M.L.K., Colevas, A.D., Haddad, R., Huang, S.H., Wee, J.T.S., Whitley, A.C., Yi, J.-L., Yom, S.S., et al., 2021. Chemotherapy in combination with radiotherapy for definitive-intent treatment of stage II-IVA nasopharyngeal carcinoma: CSCO and ASCO guideline. J. Clin. Oncol. 39, 840-859.
    Cui, Q., Feng, Q.S., Mo, H.Y., Sun, J., Xia, Y.F., Zhang, H., Foo, J.N., Guo, Y.M., Chen, L.Z., Li, M., et al., 2016. An extended genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma. Hum. Mol. Genet. 25, 3626-3634.
    Dai, W., Zheng, H., Cheung, A.K.L., Tang, C.S.-m., Ko, J.M.Y., Wong, B.W.Y., Leong, M.M.L., Sham, P.C., Cheung, F., Kwong, D.L.-W., et al., 2016. Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. U. S. A. 113, 3317-3322.
    Gettemans, J., Meerschaert, K., Vandekerckhove, J., De Corte, V., 2003. A kelch beta propeller featuring as a G beta structural mimic: reinventing the wheel? Sci. STKE 2003, PE27.
    Guo, Y.M., Chen, J.R., Feng, Y.C., Chua, M.L.K., Zeng, Y., Hui, E.P., Chan, A.K.C., Tang, L.Q., Wang, L., Cui, Q., et al., 2020. Germline polymorphisms and length of survival of nasopharyngeal carcinoma: an exome-wide association study in multiple cohorts. Adv. Sci. (Weinh) 7, 1903727.
    Gupta, V.A., Beggs, A.H., 2014. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skeletal Muscle 4, 12.
    He, Y.Q., Wang, T.M., Ji, M., Mai, Z.M., Tang, M., Wang, R., Zhou, Y., Zheng, Y., Xiao, R., Yang, D., et al., 2022. A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening. Nat. Commun. 13, 1966.
    Huang, C.L., Guo, R., Li, J.Y., Xu, C., Mao, Y.P., Tian, L., Lin, A.H., Sun, Y., Ma, J., Tang, L.L., 2020. Nasopharyngeal carcinoma treated with intensity-modulated radiotherapy: clinical outcomes and patterns of failure among subsets of 8th AJCC stage IVa. Eur. Radiol. 30, 816-822.
    Ji, M.F., Sheng, W., Cheng, W.M., Ng, M.H., Wu, B.H., Yu, X., Wei, K.R., Li, F.G., Lian, S.F., Wang, P.P., et al., 2019. Incidence and mortality of nasopharyngeal carcinoma: interim analysis of a cluster randomized controlled screening trial (PRO-NPC-001) in southern China. Ann. Oncol. 30, 1630-1637.
    Kang, Y., He, W., Ren, C., Qiao, J., Guo, Q., Hu, J., Xu, H., Jiang, X., Wang, L., 2020. Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduct. Target. Ther. 5, 245.
    Labun, K., Montague, T.G., Krause, M., Torres Cleuren, Y.N., Tjeldnes, H., Valen, E., 2019. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171-W174.
    Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
    Laskowski, R.A., Stephenson, J.D., Sillitoe, I., Orengo, C.A., Thornton, J.M., 2020. VarSite: disease variants and protein structure. Protein Sci. 29, 111-119.
    Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al., 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291.
    Lian, Y.F., Yuan, J., Cui, Q., Feng, Q.S., Xu, M., Bei, J.X., Zeng, Y.X., Feng, L., 2016. Upregulation of KLHDC4 predicts a poor prognosis in human nasopharyngeal carcinoma. PLoS ONE 11, e0152820.
    Liu, Y., He, S., Wang, X.L., Peng, W., Chen, Q.Y., Chi, D.M., Chen, J.R., Han, B.W., Lin, G.W., Li, Y.Q., et al., 2021. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat. Commun. 12, 741.
    Luo, C.L., Xu, X.C., Liu, C.J., He, S., Chen, J.R., Feng, Y.C., Liu, S.Q., Peng, W., Zhou, Y.Q., Liu, Y.X., et al., 2021. RBFOX2/GOLIM4 splicing axis activates vesicular transport pathway to promote nasopharyngeal carcinogenesis. Adv. Sci. (Weinh) 8, e2004852.
    Ng, C.C., Yew, P.Y., Puah, S.M., Krishnan, G., Yap, L.F., Teo, S.H., Lim, P.V.H., Govindaraju, S., Ratnavelu, K., Sam, C.K., et al., 2009. A genome-wide association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma. J. Hum. Genet. 54, 392-397.
    Pan, J.J., Ng, W.T., Zong, J.F., Chan, L.L.K., O'Sullivan, B., Lin, S.J., Sze, H.C.K., Chen, Y.B., Choi, H.C.W., Guo, Q.J., et al., 2016. Proposal for the 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer 122, 546-558.
    Pastushenko, I., Blanpain, C., 2019. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212-226.
    Platanias, L.C., 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375-386.
    Provance, O.K., Lewis-Wambi, J., 2019. Deciphering the role of interferon alpha signaling and microenvironment crosstalk in inflammatory breast cancer. Breast Cancer Res. 21, 59.
    Pyun, H., Gunathilake, M., Lee, J., Choi, I.J., Kim, Y.I., Sung, J., Kim, J., 2023. Functional annotation and gene set analysis of gastric cancer risk loci in a Korean population. Cancer Res. Treat. 56, 191-198.
    Qing, X., Tan, G.-l., Liu, H.-w., Li, W., Ai, J.-g., Xiong, S.-s., Yang, M.-q., Wang, T.-s., 2020. LINC00669 insulates the JAK/STAT suppressor SOCS1 to promote nasopharyngeal cancer cell proliferation and invasion. J. Exp. Clin. Cancer Res. 39, 166.
    Shihab, H.A., Gough, J., Cooper, D.N., Day, I.N., Gaunt, T.R., 2013. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29, 1504-1510.
    Tang, M., Lautenberger, J.A., Gao, X., Sezgin, E., Hendrickson, S.L., Troyer, J.L., David, V.A., Guan, L., McIntosh, C.E., Guo, X., et al., 2012. The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove. PLoS Genet. 8, e1003103.
    Tse, K.-P., Su, W.-H., Chang, K.-P., Tsang, N.-M., Yu, C.-J., Tang, P., See, L.-C., Hsueh, C., Yang, M.-L., Hao, S.-P., et al., 2009. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. Am. J. Hum. Genet. 85, 194-203.
    Usman, S., Waseem, N.H., Nguyen, T.K.N., Mohsin, S., Jamal, A., Teh, M.T., Waseem, A., 2021. Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers (Basel) 13, 4985.
    Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., Yang, J., 2017. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5-22.
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
    Wang, T.M., He, Y.Q., Xue, W.Q., Zhang, J.B., Xia, Y.F., Deng, C.M., Zhang, W.L., Xiao, R.W., Liao, Y., Yang, D.W., et al., 2022. Whole-exome sequencing study of familial nasopharyngeal carcinoma and its implication for identifying high-risk individuals. J. Natl. Cancer Inst. 114, 1689-1697.
    Weiner, D.J., Nadig, A., Jagadeesh, K.A., Dey, K.K., Neale, B.M., Robinson, E.B., Karczewski, K.J., O'Connor, L.J., 2023. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492-499.
    Wong, K.C.W., Hui, E.P., Lo, K.W., Lam, W.K.J., Johnson, D., Li, L., Tao, Q., Chan, K.C.A., To, K.F., King, A.D., et al., 2021. Nasopharyngeal carcinoma: an evolving paradigm. Nat. Rev. Clin. Oncol. 18, 679-695.
    Xiao, R.W., Wang, F., Wang, T.M., Zhang, J.B., Wu, Z.Y., Deng, C.M., Liao, Y., Zhou, T., Yang, D.W., Dong, S.Q., et al., 2022. Rare POLN mutations confer risk for familial nasopharyngeal carcinoma through weakened Epstein-Barr virus lytic replication. EBioMedicine 84, 104267.
    Xu, X.C., He, S., Zhou, Y.Q., Liu, C.J., Liu, S.Q., Peng, W., Liu, Y.X., Wei, P.P., Bei, J.X., Luo, C.L., 2021. RNA-binding motif protein RBM47 promotes tumorigenesis in nasopharyngeal carcinoma through multiple pathways. J. Genet. Genomics 48, 595-605.
    Xu, X.C., Jiang, J.X., Zhou, Y.Q., He, S., Liu, Y., Li, Y.Q., Wei, P.P., Bei, J.X., Sun, J., Luo, C.L., 2023. SRSF3/AMOTL1 splicing axis promotes the tumorigenesis of nasopharyngeal carcinoma through regulating the nucleus translocation of YAP1. Cell Death Dis. 14, 511.
    Yang, C., Chen, M., Huang, H., Li, X., Qian, D., Hong, X., Zheng, L., Hong, J., Hong, J., Zhu, Z., et al., 2020. Exome-wide rare loss-of-function variant enrichment study of 21,347 Han Chinese individuals identifies four susceptibility genes for psoriasis. J. Invest. Dermatol. 140, 799-805.
    Yu, G., Hsu, W.-L., Coghill, A.E., Yu, K.J., Wang, C.-P., Lou, P.-J., Liu, Z., Jones, K., Vogt, A., Wang, M., et al., 2019. Whole-exome sequencing of nasopharyngeal carcinoma families reveals novel variants potentially involved in nasopharyngeal carcinoma. Sci. Rep. 9, 9916.
    Zhang, L., MacIsaac, K.D., Zhou, T., Huang, P.Y., Xin, C., Dobson, J.R., Yu, K., Chiang, D.Y., Fan, Y., Pelletier, M., et al., 2017. Genomic analysis of nasopharyngeal carcinoma reveals TME-based subtypes. Mol. Cancer Res. 15, 1722-1732.
    Zhao, Y., Huang, S., Tan, X., Long, L., He, Q., Liang, X., Bai, J., Li, Q., Lin, J., Li, Y., et al., 2022. N(6)-methyladenosine-modified CBX1 regulates nasopharyngeal carcinoma progression through heterochromatin formation and STAT1 activation. Adv. Sci. (Weinh) 9, 2205091.
    Zhu, Y., Karakhanova, S., Huang, X., Deng, S.p., Werner, J., Bazhin, A.V., 2014. Influence of interferon-α on the expression of the cancer stem cell markers in pancreatic carcinoma cells. Exp. Cell Res. 324, 146-156.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return