9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 6
Jun.  2025
Turn off MathJax
Article Contents

Deep learning on chromatin profiles reveals the cis-regulatory sequence code of the rice genome

doi: 10.1016/j.jgg.2024.12.007
Funds:

This work was supported by the National Natural Science Foundation of China (32070656). The authors acknowledge the Center for Information Technology and the High-Performance Computing Center of Nanjing University for providing high performance computing (HPC) resources.

  • Received Date: 2024-09-26
  • Accepted Date: 2024-12-11
  • Rev Recd Date: 2024-12-11
  • Available Online: 2025-07-11
  • Publish Date: 2024-12-18
  • loading
  • Chen, K. M., Wong, A. K., Troyanskaya, O. G., Zhou, J., 2022. A sequence-based global map of regulatory activity for deciphering human genetics. Nat. Genet. 54, 940-949.
    de Boer, C. G., Taipale, J., 2024. Hold out the genome: a roadmap to solving the cis-regulatory code. Nature 625, 41-50.
    Fu, L.-Y., Zhu, T., Zhou, X., Yu, R., He, Z., Zhang, P., Wu, Z., Chen, M., Kaufmann, K., Chen, D., 2022. ChIP-Hub provides an integrative platform for exploring plant regulome. Nat. Commun. 13, 1-15.
    Hu, X., Fernie, A. R., Yan, J., 2023. Deep learning in regulatory genomics: from identification to design. Curr. Opin. Biotechnol. 79, 102887.
    Kathail, P., Shuai, R. W., Chung, R., Ye, C. J., Loeb, G. B., Ioannidis, N. M., 2024. Current genomic deep learning models display decreased performance in cell type-specific accessible regions. Genome. Biol 25,1-22.
    Kelley, D. R., (2020). Cross-species regulatory sequence activity prediction. PLoS. Comput. Biol 16,e1008050.
    Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W.,Mostafavi, S., 2022. Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat. Reviews. Genetics 2022 24,2 24:125-137.
    Peleke, F. F., Zumkeller, S. M., Gultas, M., Schmitt, A.,Szymanski, J., 2024. Deep learning the cis-regulatory code for gene expression in selected model plants. Nat. Commun.15,1-17.
    Schmitz, R. J., Grotewold, E., Stam, M., 2022. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant. Cell 34,718-741.
    Swinnen, G., Goossens, A., Pauwels, L., 2016. Lessons from Domestication: Targeting Cis-Regulatory Elements for Crop Improvement. Trends. Plant Sci 21,506-515.
    Wang, H., Cimen, E., Singh, N., Buckler, E., 2020. Deep learning for plant genomics and crop improvement. Curr Opin Plant. Biol 54,34-41.
    Wang, Z., Peng, Y., Li, J., Li, J., Yuan, H., Yang, S., Ding, X., Xie, A., Zhang, J., Wang, S., et al.,2024. DeepCBA: A deep learning framework for gene expression prediction in maize based on DNA sequences and chromatin interactions. Plant. Commun 5(9),100985.
    Washburn, J. D., Mejia-Guerra, M. K., Ramstein, G., Kremling, K. A., Valluru, R., Buckler, E. S., Wang, H., 2019. Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence. Proc. Natl. Acad. Sci U S A 116,5542-5549.
    Yocca, A. E., Edger, P. P., 2022. Current status and future perspectives on the evolution of cis-regulatory elements in plants. Curr. Opin. Plant. Biol 65,102139.
    Zhao, H., Tu, Z., Liu, Y., Zong, Z., Li, J., Liu, H., Xiong, F., Zhan, J., Hu, X., Xie, W., 2021. PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants. Nucleic. Acids. Res 49,W523-W529.
    Zhao, H., Li, J., Yang, L., Qin, G., Xia, C., Xu, X., Su, Y., Liu, Y., Ming, L., Chen, L. L., et al., 2021b. An inferred functional impact map of genetic variants in rice. Mol. Plant 14,1584-1599.
    Zhou, X., Zhu, T., Fang, W., Yu, R., He, Z., Chen, D. 2022. Systematic annotation of conservation states provides insights into regulatory regions in rice. J Genet Genomics 49, 1127-1137.
    Zhu, T., Xia, C., Yu, R., Zhou, X., Xu, X., Wang, L., Zong, Z., Yang, J., Liu, Y., Ming, L., et al., 2024. Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits. Nat, Commun 15,1-17.
    Zrimec, J., Zelezniak, A.,Gruden, K., 2022. Toward learning the principles of plant gene regulation. Trends. Plant. Sci 27,1206-1208.
    Zhu, S., Yuan, S., Niu, R., Zhou, Y., Wang, Z.,Xu, G., 2024. Rnairport: A deep neural network-based database characterizing representative gene models in plants. J Genet Genomics 51, 652-664.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return