Chen, K. M., Wong, A. K., Troyanskaya, O. G., Zhou, J., 2022. A sequence-based global map of regulatory activity for deciphering human genetics. Nat. Genet. 54, 940-949.
|
de Boer, C. G., Taipale, J., 2024. Hold out the genome: a roadmap to solving the cis-regulatory code. Nature 625, 41-50.
|
Fu, L.-Y., Zhu, T., Zhou, X., Yu, R., He, Z., Zhang, P., Wu, Z., Chen, M., Kaufmann, K., Chen, D., 2022. ChIP-Hub provides an integrative platform for exploring plant regulome. Nat. Commun. 13, 1-15.
|
Hu, X., Fernie, A. R., Yan, J., 2023. Deep learning in regulatory genomics: from identification to design. Curr. Opin. Biotechnol. 79, 102887.
|
Kathail, P., Shuai, R. W., Chung, R., Ye, C. J., Loeb, G. B., Ioannidis, N. M., 2024. Current genomic deep learning models display decreased performance in cell type-specific accessible regions. Genome. Biol 25,1-22.
|
Kelley, D. R., (2020). Cross-species regulatory sequence activity prediction. PLoS. Comput. Biol 16,e1008050.
|
Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W.,Mostafavi, S., 2022. Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat. Reviews. Genetics 2022 24,2 24:125-137.
|
Peleke, F. F., Zumkeller, S. M., Gultas, M., Schmitt, A.,Szymanski, J., 2024. Deep learning the cis-regulatory code for gene expression in selected model plants. Nat. Commun.15,1-17.
|
Schmitz, R. J., Grotewold, E., Stam, M., 2022. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant. Cell 34,718-741.
|
Swinnen, G., Goossens, A., Pauwels, L., 2016. Lessons from Domestication: Targeting Cis-Regulatory Elements for Crop Improvement. Trends. Plant Sci 21,506-515.
|
Wang, H., Cimen, E., Singh, N., Buckler, E., 2020. Deep learning for plant genomics and crop improvement. Curr Opin Plant. Biol 54,34-41.
|
Wang, Z., Peng, Y., Li, J., Li, J., Yuan, H., Yang, S., Ding, X., Xie, A., Zhang, J., Wang, S., et al.,2024. DeepCBA: A deep learning framework for gene expression prediction in maize based on DNA sequences and chromatin interactions. Plant. Commun 5(9),100985.
|
Washburn, J. D., Mejia-Guerra, M. K., Ramstein, G., Kremling, K. A., Valluru, R., Buckler, E. S., Wang, H., 2019. Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence. Proc. Natl. Acad. Sci U S A 116,5542-5549.
|
Yocca, A. E., Edger, P. P., 2022. Current status and future perspectives on the evolution of cis-regulatory elements in plants. Curr. Opin. Plant. Biol 65,102139.
|
Zhao, H., Tu, Z., Liu, Y., Zong, Z., Li, J., Liu, H., Xiong, F., Zhan, J., Hu, X., Xie, W., 2021. PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants. Nucleic. Acids. Res 49,W523-W529.
|
Zhao, H., Li, J., Yang, L., Qin, G., Xia, C., Xu, X., Su, Y., Liu, Y., Ming, L., Chen, L. L., et al., 2021b. An inferred functional impact map of genetic variants in rice. Mol. Plant 14,1584-1599.
|
Zhou, X., Zhu, T., Fang, W., Yu, R., He, Z., Chen, D. 2022. Systematic annotation of conservation states provides insights into regulatory regions in rice. J Genet Genomics 49, 1127-1137.
|
Zhu, T., Xia, C., Yu, R., Zhou, X., Xu, X., Wang, L., Zong, Z., Yang, J., Liu, Y., Ming, L., et al., 2024. Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits. Nat, Commun 15,1-17.
|
Zrimec, J., Zelezniak, A.,Gruden, K., 2022. Toward learning the principles of plant gene regulation. Trends. Plant. Sci 27,1206-1208.
|
Zhu, S., Yuan, S., Niu, R., Zhou, Y., Wang, Z.,Xu, G., 2024. Rnairport: A deep neural network-based database characterizing representative gene models in plants. J Genet Genomics 51, 652-664.
|