9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 5
May  2025
Turn off MathJax
Article Contents

Foxo1 directs the transdifferentiation of mouse Sertoli cells into granulosa-like cells

doi: 10.1016/j.jgg.2024.12.006
Funds:

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0820000), the National Natural Science Foundation of China (82421003, 32270902, 32170855), the Faculty Resources Project of the College of Life Sciences, Inner Mongolia University (2022-104), and Initiative Scientific Research Program, Institute of Zoology, Chinese Academy of Sciences (2023IOZ0102).

  • Received Date: 2024-12-03
  • Accepted Date: 2024-12-09
  • Rev Recd Date: 2024-12-08
  • Available Online: 2025-07-11
  • Publish Date: 2024-12-15
  • Sertoli and granulosa cells, the initial differentiated somatic cells in bipotential gonads, play crucial roles in directing male and female gonad development, respectively. The transcription factor Foxo1 is involved in diverse cellular processes, and its expression in gonadal somatic cells is sex-dependent. While Foxo1 is abundantly expressed in ovarian granulosa cells, it is notably absent in testicular Sertoli cells. Nevertheless, its function in gonadal somatic cell differentiation remains elusive. In this study, we find that ectopic expression of Foxo1 in Sertoli cells leads to defects in testes development. Further study uncovers that the ectopic expression of Foxo1 induces the abundant expression of Foxl2 in Sertoli cells, along with the upregulation of other female-specific genes. In contrast, the expression of male-specific genes is reduced. Mechanistic studies indicate that Foxo1 directly binds to the promoter region of Foxl2, inducing its expression. Our findings highlight that Foxo1 serves as a key regulator for the lineage maintenance of ovarian granulosa cells. This study contributes valuable insights into understanding the regulatory mechanisms governing the lineage maintenance of gonadal somatic cells.
  • loading
  • Barrionuevo, F., Bagheri-Fam, S., Klattig, J., Kist, R., Taketo, M.M., Englert, C., Scherer, G., 2006. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol. Reprod. 74, 195-201.
    Biason-Lauber, A., 2016. The Battle of the Sexes: Human Sex Development and Its Disorders. Results Probl. Cell. Differ. 58, 337-382.
    Chassot, A.A., Ranc, F., Gregoire, E.P., Roepers-Gajadien, H.L., Taketo, M.M., Camerino, G., de Rooij, D.G., Schedl, A., Chaboissier, M.C., 2008. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 17, 1264-1277.
    Chen, M., Dong, F., Chen, M., Shen, Z., Wu, H., Cen, C., Cui, X., Bao, S., Gao, F., 2021. PRMT5 regulates ovarian follicle development by facilitating Wt1 translation. Elife 10, e68930.
    Eijkelenboom, A., Burgering, B.M., 2013. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83-97.
    Georges, A., L'Hote, D., Todeschini, A.L., Auguste, A., Legois, B., Zider, A., Veitia, R.A., 2014. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells. Elife, 3, e04207.
    Goertz, M.J., Wu, Z., Gallardo, T.D., Hamra, F.K., Castrillon, D.H., 2011. Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J. Clin. Invest. 121, 3456-3466.
    Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., Lovell-Badge, R., 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117-121.
    Lavery, R., Lardenois, A., Ranc-Jianmotamedi, F., Pauper, E., Gregoire, E.P., Vigier, C., Moreilhon, C., Primig, M., Chaboissier, M.C., 2011. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev. Biol. 354, 111-122.
    Lecureuil, C., Fontaine, I., Crepieux, P., Guillou, F., 2002. Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice. Genesis 33, 114-118.
    Lindeman, R.E., Gearhart, M.D., Minkina, A., Krentz, A.D., Bardwell, V.J., Zarkower, D., 2015. Sexual cell-fate reprogramming in the ovary by DMRT1. Curr. Biol. 25, 764-771.
    Liu, C.F., Liu, C., Yao, H.H., 2010. Building pathways for ovary organogenesis in the mouse embryo. Curr. Top Dev. Biol. 90, 263-290.
    Liu, Z., Castrillon, D.H., Zhou, W., Richards, J.S., 2013. FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH. Mol. Endocrinol. 27, 238-252.
    Liu, Z., Ren, Y.A., Pangas, S.A., Adams, J., Zhou, W., Castrillon, D.H., Wilhelm, D., Richards, J.S., 2015. FOXO1/3 and PTEN depletion in granulosa cells promotes ovarian granulosa cell tumor development. Mol. Endocrinol. 29, 1006-1024.
    Maatouk, D.M., DiNapoli, L., Alvers, A., Parker, K.L., Taketo, M.M., Capel, B., 2008. Stabilization of β-catenin in XY gonads causes male-to-female sex-reversal. Hum. Mol. Genet. 17, 2949-2955.
    Matson, C.K., Murphy, M.W., Sarver, A.L., Griswold, M.D., Bardwell, V.J., Zarkower, D., 2011. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101-104.
    Nicol, B., Grimm, S. A., Chalmel, F., Lecluze, E., Pannetier, M., Pailhoux, E., Dupin-De-Beyssat, E., Guiguen, Y., Capel, B., Yao, H. H., 2019. RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nat. Commun. 10, 5116.
    Ottolenghi, C., Omari, S., Garcia-Ortiz, J.E., Uda, M., Crisponi, L., Forabosco, A., Pilia, G., Schlessinger, D., 2005. Foxl2 is required for commitment to ovary differentiation. Hum. Mol. Genet. 14, 2053-2062.
    Pui, H.P., Saga, Y., 2017. Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling. Mech. Dev. 144, 125-139.
    Svingen, T., Koopman, P., 2013. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes. Dev. 27, 2409-2426.
    Tarnawa, E.D., Baker, M.D., Aloisio, G.M., Carr, B.R., Castrillon, D.H., 2013. Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse mammalian species. Biol. Reprod. 88, 103.
    Tzivion, G., Dobson, M., Ramakrishnan, G., 2011. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta. 1813, 1938-1945.
    Uda, M., Ottolenghi, C., Crisponi, L., Garcia, J.E., Deiana, M., Kimber, W., Forabosco, A., Cao, A., Schlessinger, D., Pilia, G., 2004. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet. 13, 1171-1181.
    Uhlenhaut, N.H., Jakob, S., Anlag, K., Eisenberger, T., Sekido, R., Kress, J., Treier, A.C., Klugmann, C., Klasen, C., Holter, N.I., et al., 2009. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130-1142.
    Vainio, S., Heikkila, M., Kispert, A., Chin, N., McMahon, A.P., 1999. Female development in mammals is regulated by Wnt-4 signalling. Nature 397, 405-409.
    Vidal, V.P., Chaboissier, M.C., de Rooij, D.G., Schedl, A., 2001. Sox9 induces testis development in XX transgenic mice. Nat. Genet. 28, 216-217.
    Xing, Y.Q., Li, A., Yang, Y., Li, X.X., Zhang, L.N., Guo, H.C., 2018. The regulation of FOXO1 and its role in disease progression. Life Sci. 193, 124-131.
    Zhao, L., Svingen, T., Ng, E.T., Koopman, P., 2015. Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142, 1083-1088.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return