Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., Araki, T., 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
|
Ahmar, S., Zhai, Y., Huang, H., Yu, K., Hafeez Ullah Khan, M., Shahid, M., Abdul Samad, R., Ullah Khan, S., Amoo, O., Fan, C., et al., 2022. Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. Crop J. 10, 67-74.
|
Araki, T., 2001. Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol. 4, 63-68.
|
Balanza, V., Martinez-Fernandez, I., Ferrandiz, C., 2014. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. J. Exp. Bot. 65, 1193-1203.
|
Balanza, V., Martinez-Fernandez, I., Sato, S., Yanofsky, M.F., Kaufmann, K., Angenent, G.C., Bemer, M., Ferrandiz, C., 2018. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat. Commun. 9, 565.
|
Baurle, I., Dean, C., 2006. The timing of developmental transitions in plants. Cell 125, 655-664.
|
Bemer, M., van Mourik, H., Muino, J.M., Ferrandiz, C., Kaufmann, K., Angenent, G.C., 2017. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J. Exp. Bot. 68, 3391-3403.
|
Bloomer, R.H., Dean, C., 2017. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. J. Exp. Bot. 68, 5439-5452.
|
Bouche, F., Lobet, G., Tocquin, P., Perilleux, C., 2016. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 44, D1167-1171.
|
Bu, T., Lu, S., Wang, K., Dong, L., Li, S., Xie, Q., Xu, X., Cheng, Q., Chen, L., Fang, C., et al., 2021. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc. Natl. Acad. Sci. U. S. A. 118, e2010241118.
|
Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A.P., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., et al., 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950-953.
|
Chen, L., Dong, F., Cai, J., Xin, Q., Fang, C., Liu, L., Wan, L., Yang, G., Hong, D., 2018. A 2.833-kb insertion in BnFLC.A2 and its homeologous exchange with BnFLC.C2 during breeding selection generated early-flowering rapeseed. Mol. Plant 11, 222-225.
|
Chen, L., Nan, H., Kong, L., Yue, L., Yang, H., Zhao, Q., Fang, C., Li, H., Cheng, Q., Lu, S., et al., 2020. Soybean AP1 homologs control flowering time and plant height. J. Integr. Plant Biol. 62, 1868-1879.
|
Chu, L., Zhuang, J., Geng, M., Zhang, Y., Zhu, J., Zhang, C., Schnittger, A., Yi, B., Yang, C., 2024. ASYNAPSIS3 has diverse dosage-dependent effects on meiotic crossover formation in Brassica napus. Plant Cell 36, 3838-3856.
|
Chung, K.S., Lee, J.H., Lee, J.S., Ahn, J.H., 2013. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Mol. Cells 35, 519-525.
|
Crawford, B.C., Ditta, G., Yanofsky, M.F., 2007. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol. 17, 1101-1108.
|
Crawford, B.C.W., Sewell, J., Golembeski, G., Roshan, C., Long, J.A., Yanofsky, M.F., 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347, 655-659.
|
de Folter, S., Angenent, G.C., 2006. Trans meets cis in MADS science. Trends Plant Sci. 11, 224-231.
|
Dong, L., Cheng, Q., Fang, C., Kong, L., Yang, H., Hou, Z., Li, Y., Nan, H., Zhang, Y., Chen, Q., et al., 2022. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Mol. Plant 15, 308-321.
|
Dong, L., Fang, C., Cheng, Q., Su, T., Kou, K., Kong, L., Zhang, C., Li, H., Hou, Z., Zhang, Y., et al., 2021. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat. Commun. 12, 5445.
|
Dwivedi, V., Pal, L., Singh, S., Singh, N.P., Parida, S.K., Chattopadhyay, D., 2024. The chickpea WIP2 gene underlying a major QTL contributes to lateral root development. J. Exp. Bot. 75, 642-657.
|
Englbrecht, C.C., Schoof, H., Bohm, S., 2004. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genom. 5, 1-17.
|
Ferrandiz, C., Gu, Q., Martienssen, R., Yanofsky, M.F., 2000. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725-734.
|
Fornara, F., de Montaigu, A., Coupland, G., 2010. SnapShot: Control of flowering in Arabidopsis. Cell 141, 550-550.e552.
|
Fu, D., Jiang, L., Mason, A.S., Xiao, M., Zhu, L., Li, L., Zhou, Q., Shen, C., Huang, C., 2016. Research progress and strategies for multifunctional rapeseed: A case study of China. J. Integr. Agric. 15, 1673-1684.
|
Ghasemi, A., Zahediasl, S., 2012. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 10, 486-489.
|
Guo, M., Yang, F., Zhu, L., Wang, L., Li, Z., Qi, Z., Fotopoulos, V., Yu, J., Zhou, J., 2024. Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution. Nat. Commun. 15, 6667.
|
He, H., Liu, L., Munir, S., Bashir, N.H., Wang, Y., Yang, J., Li, C., 2019. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 18, 1945-1952.
|
He, S., Ma, R., Liu, Z., Zhang, D., Wang, S., Guo, Y., Chen, M., 2022. Overexpression of BnaAGL11, a MADS-box transcription factor, regulates leaf morphogenesis and senescence in Brassica napus. J. Agric. Food. Chem. 70, 3420-3434.
|
He, S., Min, Y., Liu, Z., Zhi, F., Ma, R., Ge, A., Wang, S., Zhao, Y., Peng, D., Zhang, D., et al., 2024a. Antagonistic MADS-box transcription factors SEEDSTICK and SEPALLATA3 form a transcriptional regulatory network that regulates seed oil accumulation. J. Integr. Plant Biol. 66, 121-142.
|
He, S., Zhi, F., Ge, A., Liao, Y., Li, K., Min, Y., Wei, S., Peng, D., Guo, Y., Liu, Z., et al., 2024b. BnaC06.WIP2-BnaA09.STM transcriptional regulatory module promotes leaf lobe formation in Brassica napus. Int. J. Biol. Macromol. 271, 132544.
|
Helal, M., Gill, R.A., Tang, M., Yang, L., Hu, M., Yang, L., Xie, M., Zhao, C., Cheng, X., Zhang, Y., et al., 2021. SNP- and haplotype-based GWAS of flowering-related traits in Brassica napus. Plants (Basel) 10, 2475.
|
Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., Laing, W.A., 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 1-14.
|
Herrera-Ubaldo, H., Lozano-Sotomayor, P., Ezquer, I., Di Marzo, M., Chavez Montes, R.A., Gomez-Felipe, A., Pablo-Villa, J., Diaz-Ramirez, D., Ballester, P., Ferrandiz, C., et al., 2019. New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development 146, 172395.
|
Hu, Q., Hua, W., Yin, Y., Zhang, X., Liu, L., Shi, J., Zhao, Y., Qin, L., Chen, C., Wang, H., 2017. Rapeseed research and production in China. Crop J. 5, 127-135.
|
Huang, F., Yuan, W., Tian, S., Zheng, Q., He, Y., 2019. SIN3 LIKE genes mediate long-day induction of flowering but inhibit the floral transition in short days through histone deacetylation in Arabidopsis. Plant J. 100, 101-113.
|
Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., Nilsson, O., 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694-1696.
|
Jaudal, M., Zhang, L., Che, C., Putterill, J., 2015. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis. Front. Genet. 6, 50.
|
Jia, Z., Jiang, B., Gao, X., Yue, Y., Fei, Z., Sun, H., Wu, C., Sun, S., Hou, W., Han, T., 2015. GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean. Plant Cell Rep. 34, 121-132.
|
Jiang, L., Li, D., Jin, L., Ruan, Y., Shen, W.H., Liu, C., 2018. Histone lysine methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral transition in Brassica napus. Plant J. 95, 672-685.
|
Jiang, P., Wang, S., Zheng, H., Li, H., Zhang, F., Su, Y., Xu, Z., Lin, H., Qian, Q., Ding, Y., 2018. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. New Phytol. 219, 422-435.
|
Jiang, X., Lubini, G., Hernandes-Lopes, J., Rijnsburger, K., Veltkamp, V., de Maagd, R.A., Angenent, G.C., Bemer, M., 2022. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. Plant Cell 34, 1002-1019.
|
Jung, J.H., Lee, H.J., Ryu, J.Y., Park, C.M., 2016. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Mol. Plant 9, 1647-1659.
|
Karami, O., Rahimi, A., Khan, M., Bemer, M., Hazarika, R.R., Mak, P., Compier, M., van Noort, V., Offringa, R., 2020. A suppressor of axillary meristem maturation promotes longevity in flowering plants. Nat. Plants 6, 368-376.
|
Kaufmann, K., Wellmer, F., Muino, J.M., Ferrier, T., Wuest, S.E., Kumar, V., Serrano-Mislata, A., Madueno, F., Krajewski, P., Meyerowitz, E.M., et al., 2010. Orchestration of Floral Initiation by APETALA1. Science 328, 85-89.
|
Kim, H., 2013. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 38, 52-54.
|
Kim, S., Choi, K., Park, C., Hwang, H.J., Lee, I., 2006. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18, 2985-2998.
|
Li, C., Lin, H., Chen, A., Lau, M., Jernstedt, J., Dubcovsky, J., 2019. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 146. 175398.
|
Li, N., Yang, R., Shen, S., Zhao, J., 2024. Molecular mechanism of flowering time regulation in Brassica rapa: similarities and differences with Arabidopsis. Hortic. Plant J. 10, 615-628.
|
Li, Q., Wang, Y., Wang, F., Guo, Y., Duan, X., Sun, J., An, H., 2016. Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon. Physiol. Plant 157, 507-518.
|
Li, Z., Fu, D., Wang, X., Zeng, R., Zhang, X., Tian, J., Zhang, S., Yang, X., Tian, F., Lai, J., et al., 2022. The transcription factor bZIP68 negatively regulates cold tolerance in maize. Plant Cell 34, 2833-2851.
|
Liu, C., Thong, Z., Yu, H., 2009. Coming into bloom: the specification of floral meristems. Development 136, 3379-3391.
|
Liu, Y., Kong, J., Li, T., Wang, Y., Wang, A., Han, Z., 2012. Isolation and Characterization of an APETALA1-Like Gene from Pear (Pyrus pyrifolia). Plant Mol. Biol. Rep. 31, 1031-1039.
|
Luo, M., Tai, R., Yu, C.W., Yang, S., Chen, C.Y., Lin, W.D., Schmidt, W., Wu, K., 2015. Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. Plant J. 82, 925-936.
|
Maple, R., Zhu, P., Hepworth, J., Wang, J.W., Dean, C., 2024. Flowering time: from physiology, through genetics to mechanism. Plant Physiol. 195, 190-212.
|
Marsch-Martinez, N., Zuniga-Mayo, V.M., Herrera-Ubaldo, H., Ouwerkerk, P.B., Pablo-Villa, J., Lozano-Sotomayor, P., Greco, R., Ballester, P., Balanza, V., Kuijt, S.J., 2014. The NTT transcription factor promotes replum development in A rabidopsis fruits. Plant J. 80, 69-81.
|
Mateos, J.L., Madrigal, P., Tsuda, K., Rawat, V., Richter, R., Romera-Branchat, M., Fornara, F., Schneeberger, K., Krajewski, P., Coupland, G., 2015. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol. 16, 1-23.
|
Mathieu, J., Warthmann, N., Kuttner, F., Schmid, M., 2007. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17, 1055-1060.
|
Ortuno-Miquel, S., Rodriguez-Cazorla, E., Zavala-Gonzalez, E.A., Martinez-Laborda, A., Vera, A., 2019. Arabidopsis HUA ENHANCER 4 delays flowering by upregulating the MADS-box repressor genes FLC and MAF4. Sci. Rep. 9, 1478.
|
Pabon-Mora, N., Ambrose, B.A., Litt, A., 2012. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol. 158, 1685-1704.
|
Pabon-Mora, N., Sharma, B., Holappa, L.D., Kramer, E.M., Litt, A., 2013. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. Plant J. 74, 197-212.
|
Peng, M., Cui, Y., Bi, Y., Rothstein, S.J., 2006. AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J. 46, 282-296.
|
Portoles, S., Mas, P., 2007. Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants. Plant J. 51, 966-977.
|
Qiu, J., Tang, H., Frolking, S., Boles, S., Li, C., Xiao, X., Liu, J., Zhuang, Y., Qin, X., 2003. Mapping Single-, Double-, and Triple-crop Agriculture in China at 0.5°×0.5° by Combining County-scale Census Data with a Remote Sensing-derived Land Cover Map. Geocarto Int. 18, 3-13.
|
Ren, G., Li, L., Huang, Y., Wang, Y., Zhang, W., Zheng, R., Zhong, C., Wang, X., 2018. GhWIP2, a WIP zinc finger protein, suppresses cell expansion in Gerbera hybrida by mediating crosstalk between gibberellin, abscisic acid, and auxin. New Phytol. 219, 728-742.
|
Riechmann, J.L., Meyerowitz, E.M., 1997. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol. Biol. Cell 8, 1243-1259.
|
Robert, L.S., Robson, F., Sharpe, A., Lydiate, D., Coupland, G., 1998. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol. Biol. 37, 763-772.
|
Saddic, L.A., Huvermann, B., Bezhani, S., Su, Y., Winter, C.M., Kwon, C.S., Collum, R.P., Wagner, D., 2006. The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development 133, 1673-1682.
|
Sankaranarayanan, S., Jamshed, M., Samuel, M.A., 2015. Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response. Nat. Plants 1, 1-7.
|
Schiessl, S., Iniguez-Luy, F., Qian, W., Snowdon, R.J., 2015. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genom. 16, 1-20.
|
Smaczniak, C., Immink, R.G.H., Angenent, G.C., Kaufmann, K., 2012. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081-3098.
|
Song, J.M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., et al., 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6, 34-45.
|
Song, X., Wei, Y., Xiao, D., Gong, K., Sun, P., Ren, Y., Yuan, J., Wu, T., Yang, Q., Li, X., et al., 2021. Brassica carinata genome characterization clarifies U's triangle model of evolution and polyploidy in Brassica. Plant Physiol. 186, 388-406.
|
Sun, J., Liu, Y., Zheng, Y., Xue, Y., Fan, Y., Ma, X., Ji, Y., Liu, G., Zhang, X., Li, Y., 2024. The MADS-box transcription factor GmFULc promotes GmZTL4 gene transcription to modulate maturity in soybean. J. Integr. Plant Biol. 66. 1603-1619.
|
Teaster, N.D., Keereetaweep, J., Kilaru, A., Wang, Y.S., Tang, Y., Tran, C.N., Ayre, B.G., Chapman, K.D., Blancaflor, E.B., 2012. Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana. Front. Plant Sci. 3. 32.
|
Uemura, M., Ebine, K., Uemura, T., Nakano, A., Ueda, T., 2012. Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana. PLoS One 7. e42239.
|
Wang, J., Long, Y., Wu, B., Liu, J., Jiang, C., Shi, L., Zhao, J., King, G.J., Meng, J., 2009. The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol. Biol. 9, 1-13.
|
Wang, J., Zhang, C., Chen, Y., Shao, Y., Liao, M., Hou, Q., Zhang, W., Zhu, Y., Guo, Y., Liu, Z., et al., 2023. The BnTFL1-BnGF14nu-BnFD module regulates flower development and plant architecture in Brassica napus. Crop J. 11, 1696-1710.
|
Weingartner, M., Subert, C., Sauer, N., 2011. LATE, a C2H2 zinc-finger protein that acts as floral repressor. Plant J. 68, 681-692.
|
Wu, D., Liang, Z., Yan, T., Xu, Y., Xuan, L., Tang, J., Zhou, G., Lohwasser, U., Hua, S., Wang, H., et al., 2019. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol. Plant 12, 30-43.
|
Xu, L., Hu, K., Zhang, Z., Guan, C., Chen, S., Hua, W., Li, J., Wen, J., Yi, B., Shen, J., et al., 2016. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res. 23, 43-52.
|
Yang, Q., Yang, B., Li, J., Wang, Y., Tao, R., Yang, F., Wu, X., Yan, X., Ahmad, M., Shen, J., 2020. ABA-responsive ABRE-BINDING FACTOR3 activates DAM3 expression to promote bud dormancy in Asian pear. Plant Cell Environ. 43, 1360-1375.
|
Ye, S., Huang, Y., Ma, T., Ma, X., Li, R., Shen, J., Wen, J., 2024. BnaABF3 and BnaMYB44 regulate the transcription of zeaxanthin epoxidase genes in carotenoid and abscisic acid biosynthesis. Plant Physiol. 195, 2372-2388.
|
Yu, K., Wang, X., Chen, F., Chen, S., Peng, Q., Li, H., Zhang, W., Hu, M., Chu, P., Zhang, J., et al., 2016. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L. Sci. Rep. 6, 30576.
|
Zhang, C., Jian, M., Li, W., Yao, X., Tan, C., Qian, Q., Hu, Y., Liu, X., Hou, X., 2023. Gibberellin signaling modulates flowering via the DELLA-BRAHMA-NF-YC module in Arabidopsis. Plant Cell 35, 3470-3484.
|
Zhang, Y., Fan, S., Hua, C., Teo, Z.W.N., Kiang, J.X., Shen, L., Yu, H., 2022. Phase separation of HRLP regulates flowering time in Arabidopsis. Sci. Adv. 8, eabn5488.
|
Zhao, K., Ding, L., Xia, W., Zhao, W., Zhang, X., Jiang, J., Chen, S., Chen, F., 2020. Characterization of an APETALA1 and a FRUITFUL-like homolog in chrysanthemum. Sci. Hortic. 272, 109518.
|
Zhong, P., Li, J., Luo, L., Zhao, Z., Tian, Z., 2019. TOP1α regulates FLOWERING LOCUS C expression by coupling histone modification and transcription machinery. Development 146. dev167841.
|
Zhu, Y., Klasfeld, S., Jeong, C.W., Jin, R., Goto, K., Yamaguchi, N., Wagner, D., 2020. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat. Commun. 11, 5118.
|