Andersson, A., Bergenstrahle, J., Asp, M., Bergenstrahle, L., Jurek, A., Fernandez Navarro, J.,Lundeberg, J., 2020. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol 3, 1-8.
|
Asp, M., Giacomello, S., Larsson, L., Wu, C., Furth, D., Qian, X., Wardell, E., Custodio, J., Reimegard, J., Salmen, F., et al., 2019. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647-1660.e1619.
|
Biancalani, T., Scalia, G., Buffoni, L., Avasthi, R., Lu, Z., Sanger, A., Tokcan, N., Vanderburg, C.R., Segerstolpe, A., Zhang, M., et al., 2021. Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nature Methods 18, 1352-1362.
|
Cable, D.M., Murray, E., Zou, L.S., Goeva, A., Macosko, E.Z., Chen, F.,Irizarry, R.A., 2022. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol 40, 517-526.
|
Cang, Z.,Nie, Q., 2020. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat Commun 11, 2084.
|
Casasent, A.K., Schalck, A., Gao, R., Sei, E., Long, A., Pangburn, W., Casasent, T., Meric-Bernstam, F., Edgerton, M.E.,Navin, N.E., 2018. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172, 205-217.e212.
|
Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., et al., 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-1792.e1721.
|
Codeluppi, S., Borm, L.E., Zeisel, A., La Manno, G., van Lunteren, J.A., Svensson, C.I.,Linnarsson, S., 2018. Spatial organization of the somatosensory cortex revealed by osmfish. Nature Methods 15, 932-935.
|
Dong, R.,Yuan, G.-C., 2021. Spatialdwls: Accurate deconvolution of spatial transcriptomic data. Genome Biol 22, 145.
|
Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I.,Heyn, H., 2021. Spotlight: Seeded nmf regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res 49, e50.
|
Eng, C.-H.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, C., Yuan, G.-C., et al., 2019. Transcriptome-scale super-resolved imaging in tissues by rna seqfish+. Nature 568, 235-239.
|
Fridman, W.H., Pages, F., Sautes-Fridman, C.,Galon, J., 2012. The immune contexture in human tumours: Impact on clinical outcome. Nat Rev Cancer 12, 298-306.
|
Hanahan, D.,Coussens, L.M., 2012. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322.
|
Karaiskos, N., Wahle, P., Alles, J., Boltengagen, A., Ayoub, S., Kipar, C., Kocks, C., Rajewsky, N.,Zinzen, R.P., 2017. The drosophila embryo at single-cell transcriptome resolution. 358, 194-199.
|
Kingma, D.P.J.a.p.a., 2013. Auto-encoding variational bayes.
|
Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H.W., Li, T., Elmentaite, R., Lomakin, A., Kedlian, V., Gayoso, A., et al., 2022. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol 40, 661-671.
|
Lee, J.H., Protze, S.I., Laksman, Z., Backx, P.H.,Keller, G.M., 2017. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179-194.e174.
|
Li, B., Zhang, W., Guo, C., Xu, H., Li, L., Fang, M., Hu, Y., Zhang, X., Yao, X., Tang, M., et al., 2022. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nature Methods 19, 662-670.
|
Li, H., Zhou, J., Li, Z., Chen, S., Liao, X., Zhang, B., Zhang, R., Wang, Y., Sun, S.,Gao, X., 2023. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat Commun 14, 1548.
|
Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., Li, B.,Liu, X.S., 2020. Timer2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Research 48, W509-W514.
|
Lin, G.L.,Hankenson, K.D., 2011. Integration of bmp, wnt, and notch signaling pathways in osteoblast differentiation.
|
Liu, C., Li, R., Li, Y., Lin, X., Zhao, K., Liu, Q., Wang, S., Yang, X., Shi, X., Ma, Y., et al., 2022. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Developmental Cell 57, 1284-1298.e1285.
|
Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljacic, M., Hou, T.Y.,Tegmark, M. 2024. Kan: Kolmogorov-arnold networks arXiv.
|
Lopez, R., Li, B., Keren-Shaul, H., Boyeau, P., Kedmi, M., Pilzer, D., Jelinski, A., Yofe, I., David, E., Wagner, A., et al., 2022. Destvi identifies continuums of cell types in spatial transcriptomics data. Nat Biotechnol 40, 1360-1369.
|
Ma, Y.,Zhou, X., 2022. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat Biotechnol 40, 1349-1359.
|
Markgraf, R., von Gaudecker, B., Muller-Hermelink, H.K.J.C.,research, t., 1982. The development of the human lymph node. 225, 387-413.
|
Miller, B.F., Huang, F., Atta, L., Sahoo, A.,Fan, J., 2022. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat Commun 13, 2339.
|
Nolan, E., Lindeman, G.J.,Visvader, J.E., 2023. Deciphering breast cancer: From biology to the clinic. Cell 186, 1708-1728.
|
Paik, D.T., Cho, S., Tian, L., Chang, H.Y.,Wu, J.C.J.N.R.C., 2020. Single-cell rna sequencing in cardiovascular development, disease and medicine. 17, 457-473.
|
Qian, J., Olbrecht, S., Boeckx, B., Vos, H., Laoui, D., Etlioglu, E., Wauters, E., Pomella, V., Verbandt, S., Busschaert, P., et al., 2020. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res 30, 745-762.
|
Ren, Z., Yu, P., Li, D., Li, Z., Liao, Y., Wang, Y., Zhou, B.,Wang, L., 2020. Single-cell reconstruction of progression trajectory reveals intervention principles in pathological cardiac hypertrophy. Circulation 141, 1704-1719.
|
Schmidt-Hieber, J., 2021. The kolmogorov-arnold representation theorem revisited. Neural Networks 137, 119-126.
|
Song, Q.,Su, J., 2021. Dstg: Deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Briefings in Bioinformatics 22, bbaa414.
|
Stickels, R.R., Murray, E., Kumar, P., Li, J., Marshall, J.L., Di Bella, D.J., Arlotta, P., Macosko, E.Z.,Chen, F., 2021. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nat Biotechnol 39, 313-319.
|
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P.,Satija, R., 2019. Comprehensive integration of single-cell data. Cell 177, 1888-1902 e1821.
|
Sun, D., Liu, Z., Li, T., Wu, Q.,Wang, C., 2022. Stride: Accurately decomposing and integrating spatial transcriptomics using single-cell rna sequencing. Nucleic Acids Research 50, e42-e42.
|
Tang, F., Li, J., Qi, L., Liu, D., Bo, Y., Qin, S., Miao, Y., Yu, K., Hou, W., Li, J., et al., 2023. A pan-cancer single-cell panorama of human natural killer cells. Cell 186, 4235-4251.e4220.
|
Vaca-Rubio, C.J., Blanco, L., Pereira, R.,Caus, M. 2024. Kolmogorov-arnold networks (kans) for time series analysis arXiv.
|
Vahid, M.R., Brown, E.L., Steen, C.B., Zhang, W., Jeon, H.S., Kang, M., Gentles, A.J.,Newman, A.M., 2023. High-resolution alignment of single-cell and spatial transcriptomes with cytospace. Nat Biotechnol 41, 1543-1548.
|
Kanemaru, K., Cranley, J., Muraro, D., Miranda, A.M., Ho, S.Y., Wilbrey-Clark, A., Patrick Pett, J., Polanski, K., Richardson, L.,Litvinukova, M.J.N., 2023. Spatially resolved multiomics of human cardiac niches. 619, 801-810.
|
Wei, R., He, S., Bai, S., Sei, E., Hu, M., Thompson, A., Chen, K., Krishnamurthy, S.,Navin, N.E., 2022. Spatial charting of single-cell transcriptomes in tissues. Nat Biotechnol 40, 1190-1199.
|
Xia, C., Fan, J., Emanuel, G., Hao, J.,Zhuang, X., 2019. Spatial transcriptome profiling by merfish reveals subcellular rna compartmentalization and cell cycle-dependent gene expression. Proceedings of the National Academy of Sciences 116, 19490-19499.
|
Xu, H., Wang, S., Fang, M., Luo, S., Chen, C., Wan, S., Wang, R., Tang, M., Xue, T., Li, B., et al., 2023. Spacel: Deep learning-based characterization of spatial transcriptome architectures. Nat Commun 14, 7603.
|
Xun, Z., Ding, X., Zhang, Y., Zhang, B., Lai, S., Zou, D., Zheng, J., Chen, G., Su, B., Han, L., et al., 2023. Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis. Nat Commun 14, 933.
|
Yan, L.,Sun, X., 2023. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Bioinformatics 39, btac805.
|
Yang, W., Wang, P., Xu, S., Wang, T., Luo, M., Cai, Y., Xu, C., Xue, G., Que, J., Ding, Q., et al., 2024. Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network. Nat Commun 15, 7101.
|
Yin, W., Wan, Y.,Zhou, Y., 2024. Spatialcogcn: Deconvolution and spatial information-aware simulation of spatial transcriptomics data via deep graph co-embedding. Briefings in Bioinformatics 25, bbae130.
|
Zhou, Y., Yin, W., Wu, X., Chen, L.,Wan, Y. 2023a. Accurate and flexible single cell to spatial transcriptome mapping with celloc.
|
Zhou, Z., Zhong, Y., Zhang, Z.,Ren, X., 2023b. Spatial transcriptomics deconvolution at single-cell resolution using redeconve. Nat Commun 14, 7930.
|