9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 2
Feb.  2025
Turn off MathJax
Article Contents

TMEM39A and TMEM131 facilitate bulk transport of ECM proteins through large COPII vesicle formation

doi: 10.1016/j.jgg.2024.10.013
  • Received Date: 2024-06-06
  • Accepted Date: 2024-10-31
  • Rev Recd Date: 2024-10-30
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-08
  • The growth of Caenorhabditis elegans involves multiple molting processes, during which old cuticles are shed and new cuticles are rapidly formed. This process requires the regulated bulk secretion of cuticle components. The transmembrane protein-39 (TMEM-39) mutant exhibits distinct dumpy and ruptured phenotypes characterized by notably thin cuticles. TMEM-39 primarily co-localizes with the coat protein II complex (COPII) in large vesicles rather than small COPII vesicles. These TMEM-39-associated large vesicles (TMEM-39-LVs) form robustly during the molting period and co-localize with various extracellular matrix components, including BLI-1 collagen, BLI-3 dual oxidase, and carboxypeptidases. Through immunoprecipitation using TMEM39A-FLAG and proteomics analysis in human sarcoma cells, we identify TMEM39A-associated proteins, including TMEM131. Knockdown of TMEM131 results in reduced TMEM39A-LV formation and collagen secretion in both C. elegans and human sarcoma cells, indicating a cooperative role between TMEM39A and TMEM131 in the secretion of extracellular components through the formation of large COPII vesicles. Given the conservation of TMEM39A and its associated proteins between C. elegans and humans, TMEM39A-LVs may represent a fundamental machinery for rapid and extensive secretion across metazoans.
  • loading
  • Adams, J.R.G., Pooranachithra, M., Jyo, E.M., Zheng, S.L., Goncharov, A., Crew, J.R., Kramer, J.M., Jin, Y., Ernst, A.M., Chisholm, A.D., 2023. Nanoscale patterning of collagens in C. elegans apical extracellular matrix. Nat. Commun. 14, 7506.
    Aridor, M., Fish, K.N., Bannykh, S., Weissman, J., Roberts, T.H., Lippincott-Schwartz, J., Balch, W.E., 2001. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213-229.
    Ashrafi, K., Chang, F.Y., Watts, J.L., Fraser, A.G., Kamath, R.S., Ahringer, J., Ruvkun, G., 2003. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268-272.
    Bataller, R., Brenner, D.A., 2005. Liver fibrosis. J. Clin. Invest. 115, 209-218.
    Bateman, J.F., Boot-Handford, R.P., Lamande, S.R., 2009. Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat. Rev. Genet. 10, 173-183.
    Bhartiya, T., Jun, H., 2024. Membrane Transport. AP Biology. Fiveable Inc.
    Brenner, S., 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
    Gilkes, D.M., Semenza, G.L., Wirtz, D., 2014. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer 14, 430-439.
    Humphreys, B.D., 2018. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309-326.
    Kaiser, C.A., Schekman, R., 1990. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723-733.
    Kim, T.H., Kim, D.H., Nam, H.W., Park, S.Y., Shim, J., Cho, J.W., 2010. Tyrosylprotein sulfotransferase regulates collagen secretion in Caenorhabditis elegans. Mol. Cells 29, 413-418.
    Kim, T.H., Kim, Y.J., Cho, J.W., Shim, J., 2011. A novel zinc-carboxypeptidase SURO-1 regulates cuticle formation and body morphogenesis in Caenorhabditis elegans. FEBS (Fed. Eur. Biochem. Soc.) Lett. 585, 121-127.
    Knight, C.G., Patel, M.N., Azevedo, R.B., Leroi, A.M., 2002. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol. Dev. 4, 16-27.
    Kohnlein, K., Urban, N., Guerrero-Gomez, D., Steinbrenner, H., Urbanek, P., Priebs, J., Koch, P., Kaether, C., Miranda-Vizuete, A., Klotz, L.O., 2020. A Caenorhabditis elegans ortholog of human selenium-binding protein 1 is a pro-aging factor protecting against selenite toxicity. Redox Biol. 28, 101323.
    Koseki, K., Yamamoto, A., Tanimoto, K., Okamoto, N., Teng, F., Bito, T., Yabuta, Y., Kawano, T., Watanabe, F., 2021. Dityrosine crosslinking of collagen and amyloid-beta peptides is formed by vitamin B12 deficiency-generated oxidative stress in Caenorhabditis elegans. Int. J. Mol. Sci. 22, 12959.
    Kramer, J.M., French, R.P., Park, E.C., Johnson, J.J., 1990. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell Biol. 10, 2081-2089.
    Lazetic, V., Fay, D.S., 2017. Molting in C. elegans. Worm 6, e1330246.
    Lee, S., Lim, G.E., Kim, Y.N., Koo, H.S., Shim, J., 2021. AP2M1 supports TGF-beta signals to promote collagen expression by inhibiting caveolin expression. Int. J. Mol. Sci. 22, 1639.
    Lekszas, C., Foresti, O., Raote, I., Liedtke, D., Konig, E.M., Nanda, I., Vona, B., De Coster, P., Cauwels, R., Malhotra, V. et al., 2020. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. Elife 9, e51319.
    Lessard, C.J., Adrianto, I., Ice, J.A., Wiley, G.B., Kelly, J.A., Glenn, S.B., Adler, A.J., Li, H., Rasmussen, A., Williams, A.H. et al., 2012. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am. J. Hum. Genet. 90, 648-660.
    Li, S., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P.O., Han, J.D., Chesneau, A., Hao, T. et al., 2004. A map of the interactome network of the metazoan C. elegans. Science 303, 540-543.
    Makareeva, E., Han, S., Vera, J.C., Sackett, D.L., Holmbeck, K., Phillips, C.L., Visse, R., Nagase, H., Leikin, S., 2010. Carcinomas contain a matrix metalloproteinase-resistant isoform of type I collagen exerting selective support to invasion. Cancer Res. 70, 4366-4374.
    Malhotra, V., Erlmann, P., 2011. Protein export at the ER: loading big collagens into COPII carriers. EMBO J. 30, 3475-3480.
    Malhotra, V., Erlmann, P., 2015. The pathway of collagen secretion. Annu. Rev. Cell Dev. Biol. 31, 109-124.
    Mello, C.C., Kramer, J.M., Stinchcomb, D., Ambros, V., 1991. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970.
    Meyer, K.C., 2017. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expet Rev. Respir. Med. 11, 343-359.
    Mouw, J.K., Ou, G., Weaver, V.M., 2014. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771-785.
    Page, A.P., Johnstone, I.L., 2007. The Cuticle. WormBook 1-15.
    Raote, I., Saxena, S., Campelo, F., Malhotra, V., 2021. TANGO1 marshals the early secretory pathway for cargo export. Biochim. Biophys. Acta Biomembr. 1863, 183700.
    Ricard-Blum, S., 2011. The collagen family. Cold Spring Harbor Perspect. Biol. 3, a004978.
    Saito, K., Chen, M., Bard, F., Chen, S., Zhou, H., Woodley, D., Polischuk, R., Schekman, R., Malhotra, V., 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136, 891-902.
    Saito, K., Yamashiro, K., Ichikawa, Y., Erlmann, P., Kontani, K., Malhotra, V., Katada, T., 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22, 2301-2308.
    Silva, T.C., Zhang, W., Young, J.I., Gomez, L., Schmidt, M.A., Varma, A., Chen, X.S., Martin, E.R., Wang, L., 2022. Distinct sex-specific DNA methylation differences in Alzheimer's disease. Alzheimer's Res. Ther. 14, 133.
    Sundaram, M.V., Pujol, N., 2024. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 227, iyae072.
    Taffoni, C., Pujol, N., 2015. Mechanisms of innate immunity in C. elegans epidermis. Tissue Barriers 3, e1078432.
    Tanabe, T., Maeda, M., Saito, K., Katada, T., 2016. Dual function of cTAGE5 in collagen export from the endoplasmic reticulum. Mol. Biol. Cell 27, 2008-2013.
    The International Multiple Sclerosis Genetics Consortium, 2010. Comprehensive follow-up of the first genome-wide association study of multiple sclerosis identifies KIF21B and TMEM39A as susceptibility loci. Hum. Mol. Genet. 19, 953-962.
    Thein, M.C., McCormack, G., Winter, A.D., Johnstone, I.L., Shoemaker, C.B., Page, A.P., 2003. Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Dev. Dynam. 226, 523-539.
    Thein, M.C., Winter, A.D., Stepek, G., McCormack, G., Stapleton, G., Johnstone, I.L., Page, A.P., 2009. Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J. Biol. Chem. 284, 17549-17563.
    Tran, Q., Park, J., Lee, H., Hong, Y., Hong, S., Park, S., Park, J., Kim, S.H., 2017. TMEM39A and human diseases: a brief review. Toxicol. Res. 33, 205-209.
    Witte, K., Schuh, A.L., Hegermann, J., Sarkeshik, A., Mayers, J.R., Schwarze, K., Yates, J.R, Eimer, S., Audhya, A., 2011. TFG-1 function in protein secretion and oncogenesis. Nat. Cell Biol. 13, 550-558.
    Yao, Q., Wang, B., Qin, Q., Jia, X., Li, L., Zhang, J.A., 2019. Genetic variants in TMEM39A gene are associated with autoimmune thyroid diseases. DNA Cell Biol. 38, 1249-1256.
    Zhang, Z., Bai, M., Barbosa, G.O., Chen, A., Wei, Y., Luo, S., Wang, X., Wang, B., Tsukui, T., Li, H. et al., 2020. Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking. Sci. Adv. 6, eaay7667.
    Zhang, Z., Luo, S., Barbosa, G.O., Bai, M., Kornberg, T.B., Ma, D.K., 2021. The conserved transmembrane protein TMEM-39 coordinates with COPII to promote collagen secretion and regulate ER stress response. PLoS Genet. 17, e1009317.
    Zhong, W., Sternberg, P.W., 2006. Genome-wide prediction of C. elegans genetic interactions. Science 311, 1481-1484.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return