9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 6
Jun.  2025
Turn off MathJax
Article Contents

Tensor decomposition reveals trans-regulated gene modules in maize drought response

doi: 10.1016/j.jgg.2024.10.011
Funds:

We thank Riliang Gu and Feng Qin for their suggestions about manuscript reviewing. This work was supported by the Biological Breeding-National Science and Technology Major Project (2023ZD04076), the Guangxi Key Research and Development Projects of China (GuikeAB21238004), and the Agricultural Science and Technology Innovation Program.

  • Received Date: 2024-05-29
  • Accepted Date: 2024-10-24
  • Rev Recd Date: 2024-10-22
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-08
  • When plants respond to drought stress, dynamic cellular changes occur, accompanied by alterations in gene expression, which often act through trans-regulation. However, the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers. Using a tensor decomposition method, we identify trans-acting expression quantitative trait loci (trans-eQTLs) linked to gene modules, rather than individual genes, which were associated with maize drought response. Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits. Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules, the majority of which cannot be detected based on individual gene expression. Notably, the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection. We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans, as exemplified by two transcription factor genes. Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.
  • loading
  • Ahern, D.J., Ai, Z., Ainsworth, M., Allan, C., Allcock, A., Angus, B., Ansari, M.A., Arancibia-Carcamo, C.V., Aschenbrenner, D., Attar, M., et al., 2022. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 185, 916-938.e958.
    Ali, M.A., Azeem, F., Nawaz, M.A., Acet, T., Abbas, A., Imran, Q.M., Shah, K.H., Rehman, H.M., Chung, G., Yang, S.H., et al., 2018. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. J. Plant Physiol. 226, 12-21.
    Alter, O., Brown, P.O., Botstein, D., 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U. S. A. 97, 10101-10106.
    Bailey, T.L., Grant, C.E., 2021. SEA: simple enrichment analysis of motifs. bioRxiv.
    Baker, R.L., Leong, W.F., Brock, M.T., Rubin, M.J., Markelz, R.J.C., Welch, S., Maloof, J.N., Weinig, C., 2019. Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development. PLoS Genet. 15, e1008367.
    Barreiro, L.B., Tailleux, L., Pai, A.A., Gicquel, B., Marioni, J.C., Gilad, Y., 2012. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. U. S. A. 109, 1204-1209.
    Biswas, S., Storey, J.D., Akey, J.M., 2008. Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis. BMC Bioinf. 9, 244.
    Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. BLAST+: architecture and applications. BMC Bioinf. 10, 421.
    Chen, H., Chen, W., Zhou, J., He, H., Chen, L., Chen, H., Deng, X.W., 2012. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science 193-194, 8-17.
    Chen, Q., Li, W., Tan, L., Tian, F., 2021. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol. Plant 14, 9-26.
    Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S., Van Daele, T., De Milde, L., Vermeersch, M., Maleux, K., et al., 2016. Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. Plant Cell 28, 2417-2434.
    Danilevskaya, O.N., Yu, G., Meng, X., Xu, J., Stephenson, E., Estrada, S., Chilakamarri, S., Zastrow-Hayes, G., Thatcher, S., 2019. Developmental and transcriptional responses of maize to drought stress under field conditions. Plant Direct 3, e00129.
    Fehrmann, R.S.N., Jansen, R.C., Veldink, J.H., Westra, H.-J., Arends, D., Bonder, M.J., Fu, J., Deelen, P., Groen, H.J.M., Smolonska, A., et al., 2011. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197.
    Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., Zhang, J., He, C., Du, X., Peng, Z., et al., 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat. Commun. 4, 2832.
    Fu, J., Leng, P., Wang, G., Zhao, J., 2022. The promise of eQTL studies in dissecting crop genetic basis and evolution. Annu. Plant Rev. 5, 181-212.
    Gao, Q.-M., Venugopal, S., Navarre, D., Kachroo, A., 2011. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol. 155, 464-476.
    Gibson, G., 2015. GTEx detects genetic effects. Science 348, 640-641.
    Harshman, R.A., Lundy, M.E., 1994. PARAFAC: parallel factor analysis. Comput. Stat. Data. An. 18, 39-72.
    He, C., Du, Y., Fu, J., Zeng, E., Park, S., White, F., Zheng, J., Liu, S., 2020. Early drought-responsive genes are variable and relevant to drought tolerance. G3: Genes, Genomes, Genet. 10, 1657-1670.
    Hore, V., Vinuela, A., Buil, A., Knight, J., McCarthy, M.I., Small, K., Marchini, J., 2016. Tensor decomposition for multiple-tissue gene expression experiments. Nat. Genet. 48, 1094-1100.
    Hu, W., Ren, Q., Chen, Y., Xu, G., Qian, Y., 2021. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biol. 21, 427.
    Huang, C., Sun, H., Xu, D., Chen, Q., Liang, Y., Wang, X., Xu, G., Tian, J., Wang, C., Li, D., et al., 2018a. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl. Acad. Sci. U. S. A. 115, E334-E341.
    Huang, L., Zhang, M., Jia, J., Zhao, X., Huang, X., Ji, E., Ni, L., Jiang, M., 2018b. An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. Plant and Cell Physiology 59, 916-929.
    Jiang, Y., Liang, G., Yu, D., 2012. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol. Plant 5, 1375-1388.
    Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.-y., Freimer, N.B., Sabatti, C., Eskin, E., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-354.
    Khoso, M.A., Hussain, A., Ritonga, F.N., Ali, Q., Channa, M.M., Alshegaihi, R.M., Meng, Q., Ali, M., Zaman, W., Brohi, R.D., et al., 2022. WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants. Front. Plant Sci. 13, 1-16.
    Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915.
    Kolberg, L., Kerimov, N., Peterson, H., Alasoo, K., 2020. Co-expression analysis reveals interpretable gene modules controlled by trans-acting genetic variants. eLife 9, e58705.
    Kong, W., Vanderburg, C.R., Gunshin, H., Rogers, J.T., Huang, X., 2008. A review of independent component analysis application to microarray gene expression data. BioTechniques 45, 501-520.
    Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559.
    Li, C., Guan, H., Jing, X., Li, Y., Wang, B., Li, Y., Liu, X., Zhang, D., Liu, C., Xie, X., et al., 2022a. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nat. Plants 8, 750-763.
    Li, Y., Lu, J., He, C., Wu, X., Cui, Y., Chen, L., Zhang, J., Xie, Y., An, Y., Liu, X., et al., 2022b. Cis-regulatory variation affecting gene expression contributes to the improvement of maize kernel size. Plant J. 111, 1595-1608.
    Liang, Z., Myers, Z.A., Petrella, D., Engelhorn, J., Hartwig, T., Springer, N.M., 2022. Mapping responsive genomic elements to heat stress in a maize diversity panel. Genome Biol. 23, 234.
    Lim, C., Kang, K., Shim, Y., Yoo, S.-C., Paek, N.-C., 2022. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiol. 188, 1900-1916.
    Liu, S., Gao, Y., Canela-Xandri, O., Wang, S., Yu, Y., Cai, W., Li, B., Xiang, R., Chamberlain, A.J., Pairo-Castineira, E., et al., 2022. A multi-tissue atlas of regulatory variants in cattle. Nat. Genet. 54, 1438-1447.
    Liu, S., Li, C., Wang, H., Wang, S., Yang, S., Liu, X., Yan, J., Li, B., Beatty, M., Zastrow-Hayes, G., et al., 2020. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol. 21, 163.
    Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 12, e1005767.
    Liu, X., Li, Y.I., Pritchard, J.K., 2019. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022-1034.e1026.
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
    Lowry, D.B., Logan, T.L., Santuari, L., Hardtke, C.S., Richards, J.H., DeRose-Wilson, L.J., McKay, J.K., Sen, S., Juenger, T.E., 2013. Expression quantitative trait locus mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis. Plant Cell 25, 3266-3279.
    Lu, J., Zhen, S., Zhang, J., Xie, Y., He, C., Wang, X., Wang, Z., Zhang, S., Li, Y., Cui, Y., et al., 2023. Combined population transcriptomic and genomic analysis reveals cis-regulatory differentiation of non-coding RNAs in maize. Theor. Appl. Genet. 136, 1-13.
    Lu, K., Peng, L., Zhang, C., Lu, J., Yang, B., Xiao, Z., Liang, Y., Xu, X., Qu, C., Zhang, K., et al., 2017. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in brassica napus. Front. Plant Sci. 8, 206.
    Mackay, T.F.C., Stone, E.A., Ayroles, J.F., 2009. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565-577.
    Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., Li, J., Tran, L.-S.P., Qin, F., 2015. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 8326.
    McGuigan, K., Collet, J.M., Allen, S.L., Chenoweth, S.F., Blows, M.W., 2014. Pleiotropic mutations are subject to strong stabilizing selection. Genet. 197, 1051-1062.
    Ongen, H., Buil, A., Brown, A.A., Dermitzakis, E.T., Delaneau, O., 2016. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479-1485.
    Pierce, B.L., Tong, L., Chen, L.S., Rahaman, R., Argos, M., Jasmine, F., Roy, S., Paul-Brutus, R., Westra, H.-J., Franke, L., et al., 2014. Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1,800 South Asians. PLoS Genet. 10, e1004818.
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., et al., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
    Ramdhani, S., Navarro, E., Udine, E., Efthymiou, A.G., Schilder, B.M., Parks, M., Goate, A., Raj, T., 2020. Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs. PLoS Genet. 16, e1008549.
    Sadak, M.S., Ramadan, A.A.E.-M., 2021. Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.). Physiol. Mol. Biol. Plants 27, 469-481.
    Saelens, W., Cannoodt, R., Saeys, Y., 2018. A comprehensive evaluation of module detection methods for gene expression data. Nat. Commun. 9, 1090.
    Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D., Muthamilarasan, M., 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep. 40, 1305-1329.
    Schneider, M., Lane, L., Boutet, E., Lieberherr, D., Tognolli, M., Bougueleret, L., Bairoch, A., 2009. The UniProtKB/Swiss-Prot knowledgebase and its plant proteome annotation program. J. Proteomics 72, 567-573.
    Shen, R., Wang, S., Mo, Q., 2013. Sparse integrative clustering of multiple omics data sets. Annu. Appl. Stat. 7, 269-294.
    Sieberts, S.K., Schadt, E.E., 2007. Moving toward a system genetics view of disease. Mamm. Genome 18, 389-401.
    Stein-O’Brien, G.L., Arora, R., Culhane, A.C., Favorov, A.V., Garmire, L.X., Greene, C.S., Goff, L.A., Li, Y., Ngom, A., Ochs, M.F., et al., 2018. Enter the matrix: factorization uncovers knowledge from omics. Trends Genet. 34, 790-805.
    Storey, J.D., Tibshirani, R., 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. S. A. 100, 9440-9445.
    Sun, H., Huang, X., Xu, X., Lan, H., Huang, J., Zhang, H.-S., 2012. ENAC1, a NAC Transcription Factor, is an Early and Transient Response Regulator Induced by Abiotic Stress in Rice (Oryza sativa L.). Mol. Biotechnol. 52, 101-110.
    Sun, X., Xiang, Y., Dou, N., Zhang, H., Pei, S., Franco, A.V., Menon, M., Monier, B., Ferebee, T., Liu, T., et al., 2022. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat. Biotechnol. 41, 120-127.
    Tang, S., Zhao, H., Lu, S., Yu, L., Zhang, G., Zhang, Y., Yang, Q.-Y., Zhou, Y., Wang, X., Ma, W., et al., 2021. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 14, 470-487.
    Teng, J., Gao, Y., Yin, H., Bai, Z., Liu, S., Zeng, H., Consortium, T.P., Bai, L., Cai, Z., Zhao, B., et al., 2024. A compendium of genetic regulatory effects across pig tissues. Nat. Genet. 56, 112-123.
    Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., Su, Z., 2017. agriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 45, W122-W129.
    Todaka, D., Nakashima, K., Maruyama, K., Kidokoro, S., Osakabe, Y., Ito, Y., Matsukura, S., Fujita, Y., Yoshiwara, K., Ohme-Takagi, M., et al., 2012. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc. Natl. Acad. Sci. U. S. A. 109, 15947-15952.
    Tu, X., Mejia-Guerra, M.K., Valdes Franco, J.A., Tzeng, D., Chu, P.-Y., Shen, W., Wei, Y., Dai, X., Li, P., Buckler, E.S., et al., 2020. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat. Commun. 11, 5089.
    Van Dam, S., Vosa, U., van der Graaf, A., Franke, L., de Magalhaes, J.P., 2018. Gene co-expression analysis for functional classification and gene-disease predictions. Briefings Bioinf. 19, 575-592.
    Vonapartis, E., Mohamed, D., Li, J., Pan, W., Wu, J., Gazzarrini, S., 2022. CBF4/DREB1D represses XERICO to attenuate ABA, osmotic and drought stress responses in Arabidopsis. Plant J. 110, 961-977.
    Vosa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Yazar, S., et al., 2021. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300-1310.
    Wang, H., Wang, M., Xia, Z., 2020. The Maize Class-I SUMO Conjugating Enzyme ZmSCE1d Is Involved in Drought Stress Response. International Journal of Molecular Sciences 21, 29.
    Wang, M., Fischer, J., Song, Y.S., 2019. Three-way clustering of multi-tissue multi-individual gene expression data using semi-nonnegative tensor decomposition. Annu. Appl. Stat. 13, 1103-1127.
    Hori, G., Inoue, M., Nishimura, S.-i., Nakahara, H., 2001. Blind gene classification based on ICA of microarray data, 3rd International Workshop on Independent Component Analysis and Blind Signal Separation. pp. 332-336.
    Wang, M., Song, Y.S., 2017. Tensor decompositions via two-mode higher-order SVD (HOSVD), Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017. Journal of Machine Learning Research Workshop and Conference Proceedings.
    Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., Qin, F., 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233-1241.
    Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., Zhang, J., Ye, J., Dai, G., Fan, Y., et al., 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22, 185.
    Xiao, Y., Jiang, S., Cheng, Q., Wang, X., Yan, J., Zhang, R., Qiao, F., Ma, C., Luo, J., Li, W., et al., 2021. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 22, 148.
    Zhang, F., Wu, J., Sade, N., Wu, S., Egbaria, A., Fernie, A.R., Yan, J., Qin, F., Chen, W., Brotman, Y., et al., 2021. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol. 22, 260.
    Zheng, J., Fu, J., Gou, M., Huai, J., Liu, Y., Jian, M., Huang, Q., Guo, X., Dong, Z., Wang, H., et al., 2010. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol. Biol. 72, 407-421.
    Zhou, X., Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821-824.
    Zhu, D., Chang, Y., Pei, T., Zhang, X., Liu, L., Li, Y., Zhuang, J., Yang, H., Qin, F., Song, C., et al., 2020. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J. 102, 747-760.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return