Ahern, D.J., Ai, Z., Ainsworth, M., Allan, C., Allcock, A., Angus, B., Ansari, M.A., Arancibia-Carcamo, C.V., Aschenbrenner, D., Attar, M., et al., 2022. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 185, 916-938.e958.
|
Ali, M.A., Azeem, F., Nawaz, M.A., Acet, T., Abbas, A., Imran, Q.M., Shah, K.H., Rehman, H.M., Chung, G., Yang, S.H., et al., 2018. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. J. Plant Physiol. 226, 12-21.
|
Alter, O., Brown, P.O., Botstein, D., 2000. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U. S. A. 97, 10101-10106.
|
Bailey, T.L., Grant, C.E., 2021. SEA: simple enrichment analysis of motifs. bioRxiv.
|
Baker, R.L., Leong, W.F., Brock, M.T., Rubin, M.J., Markelz, R.J.C., Welch, S., Maloof, J.N., Weinig, C., 2019. Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development. PLoS Genet. 15, e1008367.
|
Barreiro, L.B., Tailleux, L., Pai, A.A., Gicquel, B., Marioni, J.C., Gilad, Y., 2012. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. U. S. A. 109, 1204-1209.
|
Biswas, S., Storey, J.D., Akey, J.M., 2008. Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis. BMC Bioinf. 9, 244.
|
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. BLAST+: architecture and applications. BMC Bioinf. 10, 421.
|
Chen, H., Chen, W., Zhou, J., He, H., Chen, L., Chen, H., Deng, X.W., 2012. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science 193-194, 8-17.
|
Chen, Q., Li, W., Tan, L., Tian, F., 2021. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol. Plant 14, 9-26.
|
Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S., Van Daele, T., De Milde, L., Vermeersch, M., Maleux, K., et al., 2016. Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. Plant Cell 28, 2417-2434.
|
Danilevskaya, O.N., Yu, G., Meng, X., Xu, J., Stephenson, E., Estrada, S., Chilakamarri, S., Zastrow-Hayes, G., Thatcher, S., 2019. Developmental and transcriptional responses of maize to drought stress under field conditions. Plant Direct 3, e00129.
|
Fehrmann, R.S.N., Jansen, R.C., Veldink, J.H., Westra, H.-J., Arends, D., Bonder, M.J., Fu, J., Deelen, P., Groen, H.J.M., Smolonska, A., et al., 2011. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197.
|
Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., Zhang, J., He, C., Du, X., Peng, Z., et al., 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat. Commun. 4, 2832.
|
Fu, J., Leng, P., Wang, G., Zhao, J., 2022. The promise of eQTL studies in dissecting crop genetic basis and evolution. Annu. Plant Rev. 5, 181-212.
|
Gao, Q.-M., Venugopal, S., Navarre, D., Kachroo, A., 2011. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol. 155, 464-476.
|
Gibson, G., 2015. GTEx detects genetic effects. Science 348, 640-641.
|
Harshman, R.A., Lundy, M.E., 1994. PARAFAC: parallel factor analysis. Comput. Stat. Data. An. 18, 39-72.
|
He, C., Du, Y., Fu, J., Zeng, E., Park, S., White, F., Zheng, J., Liu, S., 2020. Early drought-responsive genes are variable and relevant to drought tolerance. G3: Genes, Genomes, Genet. 10, 1657-1670.
|
Hore, V., Vinuela, A., Buil, A., Knight, J., McCarthy, M.I., Small, K., Marchini, J., 2016. Tensor decomposition for multiple-tissue gene expression experiments. Nat. Genet. 48, 1094-1100.
|
Hu, W., Ren, Q., Chen, Y., Xu, G., Qian, Y., 2021. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biol. 21, 427.
|
Huang, C., Sun, H., Xu, D., Chen, Q., Liang, Y., Wang, X., Xu, G., Tian, J., Wang, C., Li, D., et al., 2018a. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl. Acad. Sci. U. S. A. 115, E334-E341.
|
Huang, L., Zhang, M., Jia, J., Zhao, X., Huang, X., Ji, E., Ni, L., Jiang, M., 2018b. An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. Plant and Cell Physiology 59, 916-929.
|
Jiang, Y., Liang, G., Yu, D., 2012. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol. Plant 5, 1375-1388.
|
Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.-y., Freimer, N.B., Sabatti, C., Eskin, E., 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-354.
|
Khoso, M.A., Hussain, A., Ritonga, F.N., Ali, Q., Channa, M.M., Alshegaihi, R.M., Meng, Q., Ali, M., Zaman, W., Brohi, R.D., et al., 2022. WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants. Front. Plant Sci. 13, 1-16.
|
Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915.
|
Kolberg, L., Kerimov, N., Peterson, H., Alasoo, K., 2020. Co-expression analysis reveals interpretable gene modules controlled by trans-acting genetic variants. eLife 9, e58705.
|
Kong, W., Vanderburg, C.R., Gunshin, H., Rogers, J.T., Huang, X., 2008. A review of independent component analysis application to microarray gene expression data. BioTechniques 45, 501-520.
|
Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559.
|
Li, C., Guan, H., Jing, X., Li, Y., Wang, B., Li, Y., Liu, X., Zhang, D., Liu, C., Xie, X., et al., 2022a. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nat. Plants 8, 750-763.
|
Li, Y., Lu, J., He, C., Wu, X., Cui, Y., Chen, L., Zhang, J., Xie, Y., An, Y., Liu, X., et al., 2022b. Cis-regulatory variation affecting gene expression contributes to the improvement of maize kernel size. Plant J. 111, 1595-1608.
|
Liang, Z., Myers, Z.A., Petrella, D., Engelhorn, J., Hartwig, T., Springer, N.M., 2022. Mapping responsive genomic elements to heat stress in a maize diversity panel. Genome Biol. 23, 234.
|
Lim, C., Kang, K., Shim, Y., Yoo, S.-C., Paek, N.-C., 2022. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiol. 188, 1900-1916.
|
Liu, S., Gao, Y., Canela-Xandri, O., Wang, S., Yu, Y., Cai, W., Li, B., Xiang, R., Chamberlain, A.J., Pairo-Castineira, E., et al., 2022. A multi-tissue atlas of regulatory variants in cattle. Nat. Genet. 54, 1438-1447.
|
Liu, S., Li, C., Wang, H., Wang, S., Yang, S., Liu, X., Yan, J., Li, B., Beatty, M., Zastrow-Hayes, G., et al., 2020. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol. 21, 163.
|
Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 12, e1005767.
|
Liu, X., Li, Y.I., Pritchard, J.K., 2019. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022-1034.e1026.
|
Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
|
Lowry, D.B., Logan, T.L., Santuari, L., Hardtke, C.S., Richards, J.H., DeRose-Wilson, L.J., McKay, J.K., Sen, S., Juenger, T.E., 2013. Expression quantitative trait locus mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis. Plant Cell 25, 3266-3279.
|
Lu, J., Zhen, S., Zhang, J., Xie, Y., He, C., Wang, X., Wang, Z., Zhang, S., Li, Y., Cui, Y., et al., 2023. Combined population transcriptomic and genomic analysis reveals cis-regulatory differentiation of non-coding RNAs in maize. Theor. Appl. Genet. 136, 1-13.
|
Lu, K., Peng, L., Zhang, C., Lu, J., Yang, B., Xiao, Z., Liang, Y., Xu, X., Qu, C., Zhang, K., et al., 2017. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in brassica napus. Front. Plant Sci. 8, 206.
|
Mackay, T.F.C., Stone, E.A., Ayroles, J.F., 2009. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565-577.
|
Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., Li, J., Tran, L.-S.P., Qin, F., 2015. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 8326.
|
McGuigan, K., Collet, J.M., Allen, S.L., Chenoweth, S.F., Blows, M.W., 2014. Pleiotropic mutations are subject to strong stabilizing selection. Genet. 197, 1051-1062.
|
Ongen, H., Buil, A., Brown, A.A., Dermitzakis, E.T., Delaneau, O., 2016. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479-1485.
|
Pierce, B.L., Tong, L., Chen, L.S., Rahaman, R., Argos, M., Jasmine, F., Roy, S., Paul-Brutus, R., Westra, H.-J., Franke, L., et al., 2014. Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1,800 South Asians. PLoS Genet. 10, e1004818.
|
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., et al., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
|
Ramdhani, S., Navarro, E., Udine, E., Efthymiou, A.G., Schilder, B.M., Parks, M., Goate, A., Raj, T., 2020. Tensor decomposition of stimulated monocyte and macrophage gene expression profiles identifies neurodegenerative disease-specific trans-eQTLs. PLoS Genet. 16, e1008549.
|
Sadak, M.S., Ramadan, A.A.E.-M., 2021. Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.). Physiol. Mol. Biol. Plants 27, 469-481.
|
Saelens, W., Cannoodt, R., Saeys, Y., 2018. A comprehensive evaluation of module detection methods for gene expression data. Nat. Commun. 9, 1090.
|
Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D., Muthamilarasan, M., 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep. 40, 1305-1329.
|
Schneider, M., Lane, L., Boutet, E., Lieberherr, D., Tognolli, M., Bougueleret, L., Bairoch, A., 2009. The UniProtKB/Swiss-Prot knowledgebase and its plant proteome annotation program. J. Proteomics 72, 567-573.
|
Shen, R., Wang, S., Mo, Q., 2013. Sparse integrative clustering of multiple omics data sets. Annu. Appl. Stat. 7, 269-294.
|
Sieberts, S.K., Schadt, E.E., 2007. Moving toward a system genetics view of disease. Mamm. Genome 18, 389-401.
|
Stein-O’Brien, G.L., Arora, R., Culhane, A.C., Favorov, A.V., Garmire, L.X., Greene, C.S., Goff, L.A., Li, Y., Ngom, A., Ochs, M.F., et al., 2018. Enter the matrix: factorization uncovers knowledge from omics. Trends Genet. 34, 790-805.
|
Storey, J.D., Tibshirani, R., 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. S. A. 100, 9440-9445.
|
Sun, H., Huang, X., Xu, X., Lan, H., Huang, J., Zhang, H.-S., 2012. ENAC1, a NAC Transcription Factor, is an Early and Transient Response Regulator Induced by Abiotic Stress in Rice (Oryza sativa L.). Mol. Biotechnol. 52, 101-110.
|
Sun, X., Xiang, Y., Dou, N., Zhang, H., Pei, S., Franco, A.V., Menon, M., Monier, B., Ferebee, T., Liu, T., et al., 2022. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat. Biotechnol. 41, 120-127.
|
Tang, S., Zhao, H., Lu, S., Yu, L., Zhang, G., Zhang, Y., Yang, Q.-Y., Zhou, Y., Wang, X., Ma, W., et al., 2021. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 14, 470-487.
|
Teng, J., Gao, Y., Yin, H., Bai, Z., Liu, S., Zeng, H., Consortium, T.P., Bai, L., Cai, Z., Zhao, B., et al., 2024. A compendium of genetic regulatory effects across pig tissues. Nat. Genet. 56, 112-123.
|
Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., Su, Z., 2017. agriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 45, W122-W129.
|
Todaka, D., Nakashima, K., Maruyama, K., Kidokoro, S., Osakabe, Y., Ito, Y., Matsukura, S., Fujita, Y., Yoshiwara, K., Ohme-Takagi, M., et al., 2012. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc. Natl. Acad. Sci. U. S. A. 109, 15947-15952.
|
Tu, X., Mejia-Guerra, M.K., Valdes Franco, J.A., Tzeng, D., Chu, P.-Y., Shen, W., Wei, Y., Dai, X., Li, P., Buckler, E.S., et al., 2020. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat. Commun. 11, 5089.
|
Van Dam, S., Vosa, U., van der Graaf, A., Franke, L., de Magalhaes, J.P., 2018. Gene co-expression analysis for functional classification and gene-disease predictions. Briefings Bioinf. 19, 575-592.
|
Vonapartis, E., Mohamed, D., Li, J., Pan, W., Wu, J., Gazzarrini, S., 2022. CBF4/DREB1D represses XERICO to attenuate ABA, osmotic and drought stress responses in Arabidopsis. Plant J. 110, 961-977.
|
Vosa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Yazar, S., et al., 2021. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300-1310.
|
Wang, H., Wang, M., Xia, Z., 2020. The Maize Class-I SUMO Conjugating Enzyme ZmSCE1d Is Involved in Drought Stress Response. International Journal of Molecular Sciences 21, 29.
|
Wang, M., Fischer, J., Song, Y.S., 2019. Three-way clustering of multi-tissue multi-individual gene expression data using semi-nonnegative tensor decomposition. Annu. Appl. Stat. 13, 1103-1127.
|
Hori, G., Inoue, M., Nishimura, S.-i., Nakahara, H., 2001. Blind gene classification based on ICA of microarray data, 3rd International Workshop on Independent Component Analysis and Blind Signal Separation. pp. 332-336.
|
Wang, M., Song, Y.S., 2017. Tensor decompositions via two-mode higher-order SVD (HOSVD), Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017. Journal of Machine Learning Research Workshop and Conference Proceedings.
|
Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., Qin, F., 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233-1241.
|
Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., Zhang, J., Ye, J., Dai, G., Fan, Y., et al., 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22, 185.
|
Xiao, Y., Jiang, S., Cheng, Q., Wang, X., Yan, J., Zhang, R., Qiao, F., Ma, C., Luo, J., Li, W., et al., 2021. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 22, 148.
|
Zhang, F., Wu, J., Sade, N., Wu, S., Egbaria, A., Fernie, A.R., Yan, J., Qin, F., Chen, W., Brotman, Y., et al., 2021. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol. 22, 260.
|
Zheng, J., Fu, J., Gou, M., Huai, J., Liu, Y., Jian, M., Huang, Q., Guo, X., Dong, Z., Wang, H., et al., 2010. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol. Biol. 72, 407-421.
|
Zhou, X., Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821-824.
|
Zhu, D., Chang, Y., Pei, T., Zhang, X., Liu, L., Li, Y., Zhuang, J., Yang, H., Qin, F., Song, C., et al., 2020. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J. 102, 747-760.
|